[BZOJ1907]树的路径覆盖(贪心||树形dp)

这篇博客主要介绍了BZOJ1907题目的解题思路,包括两种解决方案:贪心策略和树形动态规划。在贪心策略中,作者阐述了如何通过让每个节点尽可能成为线段的拐点来覆盖路径。而在树形DP方法中,详细解释了点的状态转移,特别强调了状态转移的特殊情况,即只有一个儿子不是拐点。博客提供了相应的代码实现,帮助读者理解这两种方法。
摘要由CSDN通过智能技术生成

题目描述

传送门

题解

准确地说看到这道题之后是没有什么思路的。
以某一个点为根的子树,这个点只有两种状态:覆盖它的线段从这里结束/覆盖它的线段不从这里结束,或者说这个点是一条线段的拐点。贪心策略是:只要当前点能成为拐点,就让它成为拐点。也就是说,贪心地将它能连的儿子连起来。可以发现把某一点的两个儿子连起来使之成为拐点和留着这个点和它上面的点连是等价的,所以这个贪心的策略是正确的。
不过其实还有一种更科学的树形dp的方法。点的两种状态可以用0/1来表示,那么转移的时候无非就这么几种情况:
①当前点是拐点:当前点是拐点并且所有的儿子都是拐点 或者 这个点不是拐点和一个不是拐点的儿子连起来变成一个拐点。
②当前点不是拐点:当前点不是拐点并且所有的儿子都是拐点 或者 只有一个儿子不是拐点然后把它和这个儿子连起来。
那么状态转移写起来就比较简单咯。

注意这里的dp有一个特点:在第二个转移中 有一个条件必须满足“只有一个儿子不是拐点”也就是当前枚举的儿子,其余的儿子都是拐点,也就是说要把以前枚举过的儿子不是拐点的情况都加起来。这一点刚开始想不大过来。

代码

贪心

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 10005

int T,n,x,y;
int tot,point[N],nxt[N*2],v[N*2],ans[N];
bool vis[N];

void clear()
{
    n=x=y=0;
    tot=0; memset(point,
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值