传递函数是在神经网络中用到的,在这里先列举一下:
| 函数名称 | 映射关系 | 图像 | 缩写 | 说明 |
| 阶梯函数 |
a=0,n<=0 a=1,n>0 | Step |
n大于等 于0时, 输出1, 否则输出0 | |
| 符号函数 |
a=-1,n<0 a=1,n>=0 | Sgn |
n大于等于 0时,输出1, 否则输出-1 | |
| 线性函数 | a=n | Linear |
n本身就是 神经元输出 | |
| 饱和线性函数 |
a=0,n<0 a=n,0<==n<=1 a=1,n>1 | Ramp |
n小于0时, 输出0, n在0到1 区间时, 输出n, n大于1时, 输出1 | |
| 对数S形函数 | a=1/(1+exp(-n)) | Sigmoid |
有界函数, 无论n如何, 输出永远在 (0,1)区间 n→负无穷: a=0 n→正无穷: a=1 | |
|
双曲正切 S形函数 | \[a=\frac{e^{n}-e^{-n}}{e^{n}+e^{-n}}\] | Tanh |
有界函数, 无论n如何, 输出永远在 (-1,1)区间 n→负无穷: a=-1 n→正无穷: a=1 |
本文介绍了神经网络中常用的传递函数,包括阶梯函数、符号函数、线性函数等,并详细解释了每种函数的工作原理及特性。
1万+

被折叠的 条评论
为什么被折叠?



