GPU编程自学2 —— CUDA环境配置

本文记录了作者从零开始学习GPU编程的过程,详细介绍了环境搭建步骤,包括安装CUDAToolkit及验证安装是否成功的方法,并提供了测试案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习的兴起,使得多线程以及GPU编程逐渐成为算法工程师无法规避的问题。这里主要记录自己的GPU自学历程。

目录

二、 CUDA环境配置

首先说明一下我的基础环境: 联想小新超极本;Win10 X64 专业版; NVIDIA GeForce 940MX; VS2013。

2.1 安装CUDA Toolkit

在保证NVIDIA显卡驱动成功安装的条件下,从下面链接下载并安装对应版本的CUDA Toolkit.(注意:最好已经安装好VS)

https://developer.nvidia.com/cuda-downloads。 建议右键复制下载链接然后迅雷下载。

float

通过在命令窗中执行 nvcc -V初步判断是否安装成功:

float

安装成功后(默认安装)系统会增加如下环境变量:

CUDA_PATH:  C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
CUDA_PATH_V8_0:  C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0
NUMBER_OF_PROCESSORS: 4
NVCUDASAMPLES_ROOT:  C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0
NVCUDASAMPLES8_0_ROOT:  C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0
NVTOOLSEXT_PATH:  C:\Program Files\NVIDIA Corporation\NvToolsExt\

2.2 VS测试工程

CUDA Toolkit安装成功后会自动和系统的编译器进行绑定。 以我的VS2013为例,“新建项目”下增加了 “NVIDIA”选项。

float

CUDA Toolkit已经为我们提供了一些简单的样例,位于 环境变量 “NVCUDASAMPLES_ROOT”所指向的目录下。 注意,该目录通常为隐藏目录。

float

随便选择其中的一个子项目,如果可以成功运行,则表明CUDA确实已经安装成功。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值