1 - 基于卡方检验的特征选择

基于卡方检验的特征选择,更多也可参考http://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.html———————— 原理简介 ———————— 卡方检验(\(\chi ^2\) test),是一种常用的特征选择方法,尤其是在生物和金融领域。\(\chi ^2\) 用来描...
阅读(1994) 评论(0)

C++ 宏定义

———————— #define基本用法 ————————#define命令是C语言中的一个宏定义命令,它用来将一个标识符(宏名)定义为一个字符串,该标识符被称为宏名,被定义的字符串称为替换文本。程序编译之前,编译的时候所有的宏名都会被定义的字符串替换,这便是宏替换。理解宏定义的关键在于 “替换”。该命令有两种格式:一种是简单的宏定义,另一种是带参数的宏定义。(1)简单的宏定义: #defi...
阅读(1115) 评论(0)

MKL——常用函数说明

Intel MKL,全称 Intel Math Kernel Library,提供经过高度优化和大量线程化处理的数学例程,面向性能要求极高的科学、工程及金融等领域的应用。MKL是一款商用函数库,但提供C、Fortran 和 Fortran 95的支持,但仅支持Intel自家旗下的CPU。在Intel CPU上,MKL的性能要远高于Eigen, 虽然OpenBLAS和其差距不是太大,但OpenBLAS...
阅读(3983) 评论(0)

C++ RGB转灰度图像

RGB转灰度,通常会使用下面的一个心理学公式:(opencv和matlab中使用的也是该公式)Gray = 0.2989*R + 0.5870*G + 0.1140*B抛却指令优化不谈,优化转化速度的最直接方法就是将浮点运算转化为整数运算:比如我们可以将上式转化为:Gray = (2989*R + 5870*G + 1140*B)/ 10000,但是上面的除法还是不够快,我们完全可以使用移位操作来代...
阅读(1989) 评论(0)

caffe层解读系列——BatchNorm

之前也写过一篇介绍 Batch Normalization 的文章,原理还不是很清楚的童鞋可以移步看一下。后来看到caffe中的实现,发现还是有很大不同之处,所以这里介绍一些caffe中的BN。 —————————— 可选参数 —————————— 可选参数定义在 src\caffe\proto\caffe.proto 中,共有3个:message BatchNormParameter { //...
阅读(7991) 评论(3)

c++ ——排序并保留索引

C++自带的排序函数sort只能获得排好序的值,没办法像Matlab一样同时返回排序索引。下面使用c++11中的 lambdas来为sort函数添加一个模式:template vector sort_indexes(const vector &v) { // 初始化索引向量 vector idx(v.size()); //使用...
阅读(1900) 评论(0)

NMS——非极大值抑制

NMS(non maximum suppression),中文名非极大值抑制,在很多计算机视觉任务中都有广泛应用,如:边缘检测、目标检测等。这里主要以人脸检测中的应用为例,来说明NMS,并给出Matlab和C++示例程序。 人脸检测的一些概念(1) 绝大部分人脸检测器的核心是分类器,即给定一个尺寸固定图片,分类器判断是或者不是人脸;(2)将分类器进化为检测器的关键是:在原始图像上从多个尺度产生窗口,...
阅读(9264) 评论(7)

人脸检测——STN

本次介绍一篇来自微软的人脸检测文章:《2016 ECCV Supervised Transformer Network for Efficient Face Detection》. 核心导读: (1) 训练了一个端到端的级联网络;(2) 引入了supervised transformer层,可以对候选窗口进行矫正以便后续更好地判断是否为人脸;(3) 引入了Non-top K的抑制策略,在保证召回率的...
阅读(2662) 评论(1)

NDK各个版本链接

目前不仅是国内不好找到各个版本的NDK,就连谷歌翻链接也总是出问题,这里给出一些各个版本的链接。ndk_r12 (June 2016) Windows 32-bit : http://dl.google.com/android/repository/android-ndk-r12b-windows-x86.zip Windows 64-bit : http://dl.google.com/and...
阅读(12653) 评论(7)

人脸检测——Compact CascadeCNN

本次介绍一篇速度爆表人脸检测文章:《2015 Arxiv: Compact Convolutional Neural Network Cascade for Face Detection》.作者有一个github链接,https://github.com/Bkmz21/FD-Evaluation,但是里面只是评价工具并没有检测的工具。 评价: 速度是很快,但是性能应该来说比较差,只比公开的Openc...
阅读(2417) 评论(0)

人脸检测——MTCNN

本次介绍一篇速度还不错的人脸检测文章:《2016 Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks》. ———————————— Pipeline———————————— 上面是该方法的流程图,可以看出也是三阶级联,和我之前的一篇博文CascadeCNN很像。stage1: 在构建图...
阅读(23299) 评论(9)

人脸检测——Faster R-CNN

本次介绍人脸检测方法Faster R-CNN:《2016 Arxiv: Face Detection with the Faster R-CNN》.上面这篇文章,是对Faster R-CNN的人脸检测实现,原始的Faster R-CNN实现的是多目标检测,即下面这篇文章:《2015 CVPR: Faster R-CNN: Towards Real-Time Object Detection with...
阅读(4937) 评论(0)

人脸检测——HyperFace

本次介绍人脸检测检测方法HyperFace:《2016 PAMI HyperFace: A Deep Multi-task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition. 核心导读: MultiTask,将人脸检测、关键点定位、头部角度估计和性...
阅读(2366) 评论(4)

人脸检测——UnitBox

本次介绍一篇来自旷视科技的人脸检测文章:《2016 ACM MM UnitBox: An Advanced Object Detection Network》.代码应该是不会放出来了,但好在实现比较简单。 ———————————— 分割线 ———————————— Introduction 目标检测可以视作两个任务:目标定位 + 视觉识别。基于深度学习的目标检测大致又可以分为三个部分:(1)Reg...
阅读(3238) 评论(0)

人脸检测——xiaomi

本次介绍一篇来自小米黑科技的人脸检测文章:《arxiv: Bootstrapping Face Detection with Hard Negative Examples》.看完后续算法讲解之后,请自行体会人脸检测专业研究人员看到下图的感受。 ———————————— 分割线 ———————————— 文章很短,没有创新。 核心思想: Hard Negative Mining + Faster R-...
阅读(1695) 评论(0)
127条 共9页首页 上一页 ... 6 7 8 9 下一页 尾页
    个人资料
    • 访问:410699次
    • 积分:5031
    • 等级:
    • 排名:第5987名
    • 原创:115篇
    • 转载:11篇
    • 译文:1篇
    • 评论:444条
    最新评论