关闭

机器学习-实战-入门-MNIST手写数字识别

标签: python机器学习人工智能MNIST手写数字识别
678人阅读 评论(3) 收藏 举报
分类:
作者:橘子派
声明:版权所有,转载请注明出处,谢谢。


实验环境:
Windows10
Sublime
Anaconda 1.6.0
Python3.6

代码功能包括:
一.ubyte数据集转换成csv形式
#将mnist数据集转换成CSV格式
import struct

def to_csv(name,maxdata):
	lbl_f = open("./data/"+name+"-labels.idx1-ubyte","rb")
	#打开标签数据集
	img_f = open("./data/"+name+"-images.idx3-ubyte","rb")
	#打开图像数据集
	csv_f = open("./data/"+name+",csv","w",encoding="utf-8")
	#写入CSV文件

	mag,lbl_count=struct.unpack(">II",lbl_f.read(8))
	#将字节流转换成python数据类型复制给标签
	mag,img_count=struct.unpack(">II",img_f.read(8))
	#将字节流转换成python数据类型复制给图像
	rows,cols=struct.unpack(">II",img_f.read(8))
	#将字节流转换成python数据类型复制给行列
	pixels=rows*cols
	#计算数据总量

	res=[]
	for idx in range(lbl_count):
		if idx > maxdata:break
		#设置计数器,大于数据个数总量时跳出循环
		label=struct.unpack("B",lbl_f.read(1))[0]
		bdata=img_f.read(pixels)
		sdata=list(map(lambda n:str(n),bdata))
		csv_f.write(str(label)+",")
		#写入标签
		csv_f.write(",".join(sdata)+"\r\n")
		#写入数据(数字)
		if idx < 10:
			s="P2 28 28 255\n"
			s+=" ".join(sdata)
			iname="./data/{0}-{1}-{2}.pgm".format(name,idx,label)
			with open(iname,"w",encoding="utf-8") as f:
				f.write(s)
	csv_f.close()
	#关闭CSV流
	lbl_f.close()
	#关闭标签流
	img_f.close()
	#关闭图像流

to_csv("train",1000)
#转换到train.csv 1000个数据
to_csv("t10k",1000)
#转换到t10k.csv 1000个数据

二.用sklearn的交叉验证处理数据,SVM训练数据预测结果,metrics生成分类报告和准确率
#用sklearn中的SVM来训练模型,预测数据集
from sklearn import cross_validation,svm,metrics

def load_csv(fname):
	labels=[]
	images=[]
	with open(fname,"r") as f:
		for line in f:
			cols=line.split(",")
			if len(cols)<2:continue
			labels.append(int(cols.pop(0)))
			vals=list(map(lambda n: int(n) / 256,cols))
			images.append(vals)
		return {"labels":labels,"images":images}

data=load_csv("./data/train.csv")
test=load_csv("./data/t10k.csv")

clf=svm.SVC()
clf.fit(data["images"],data["labels"])
#训练数据集

predict=clf.predict(test["images"])
#预测测试集

score=metrics.accuracy_score(test["labels"],predict)
#生成测试精度
report=metrics.classification_report(test["labels"],predict)
#生成交叉验证的报告
print(score)
#显示数据精度
print(report)
#显示交叉验证数据集报告

运行结果

三组平均测试精度为0.772

参考文献:
《统计学习方法》
Web scraping and machine learning by python
1
0

猜你在找
C语言及程序设计(讲师:贺利坚)
Python爬虫工程师培养课程全套(讲师:韦玮)
Python全栈开发入门与实战课(讲师:李杰)
2017软考网络规划设计师视频套餐(讲师:任铄)
2017软考软件设计师视频套餐(讲师:任铄)
2017软考-信息系统项目管理师视频套餐(讲师:任铄)
软考(高级)项目经理实战营(讲师:张传波)
微信公众平台开发套餐(讲师:刘运强)
深度学习原理+实战+算法+主流框架套餐(讲师:唐宇迪)
2017系统集成项目管理工程师通关套餐(讲师:徐朋)
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:48610次
    • 积分:1191
    • 等级:
    • 排名:千里之外
    • 原创:56篇
    • 转载:0篇
    • 译文:4篇
    • 评论:102条
    QQ联系方式
    作者日本硕士
    知识长期输入中
    技术长期磨练中
    如有问题或交流
    请QQ联系 649508982
    来者请说明CSDN
    或者加入机器学习交流群
    不定期发送pdf等学习资源
    QQ群号:657119450
    机器学习 QQ群加入
    博客专栏
    最新评论