opencv3_java 图形图像的均衡Equalize equalizeHist

原创 2017年05月31日 21:27:37

图形图像的均衡Equalize equalizeHist


package opencv_java_demo;

import org.opencv.core.*;
import org.opencv.imgcodecs.*;
import org.opencv.imgproc.Imgproc;

public class Equalize {

	public static void main(String[] args) {
		try{
			System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
			
			Mat src=Imgcodecs.imread("./images/lenna.jpg",Imgcodecs.CV_LOAD_IMAGE_GRAYSCALE);
			//读取图像到矩阵中,取灰度图像
			if(src.empty()){
				throw new Exception("no file");
			}
			
			Imgcodecs.imwrite("./images/in.jpg", src);
			//输出灰度图像值
			Mat dst=new Mat();
			//定义新矩阵
			Imgproc.equalizeHist(src, dst);
			//辉度平滑
			Imgcodecs.imwrite("./images/equalize.jpg", dst);
			
		}catch(Exception e){
			System.out.println("例外:" + e);
		}

	}

}






版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

opencv3_java 图形图像的均衡Equalize equalizeHist

图形图像的均衡Equalize equalizeHist package opencv_java_demo; import org.opencv.core.*; import org.openc...

opencv3_java 图形图像的翻转Flip flip

图形图像的翻转Flip flip package opencv_java_demo; import org.opencv.core.*; import org.opencv.imgcodecs....

精选:深入理解 Docker 内部原理及网络配置

网络绝对是任何系统的核心,对于容器而言也是如此。Docker 作为目前最火的轻量级容器技术,有很多令人称道的功能,如 Docker 的镜像管理。然而,Docker的网络一直以来都比较薄弱,所以我们有必要深入了解Docker的网络知识,以满足更高的网络需求。

opencv学习(三十六)图像直方图均衡化equalizeHist

图像直方图描述了图像中灰度值的分布情况,直方图均衡化就是通过拉伸像素强度分布范围来增强图像对比度的一种方法。如下图: 可以看到像素主要集中在中间的一些强度值上。直方图均衡化要做的就是拉伸这个范围。如...

opencv3_java 图像的平均模糊MedianBlur Imgproc.medianBlur

图像的平均模糊MedianBlur Imgproc.medianBlur package opencv_java_demo; import org.opencv.core.*; import o...

opencv3_java 图形图像模块化Mozaic Imgproc.resize

图形图像模块化Mozaic Imgproc.resize package opencv_java_demo; import org.opencv.core.*; import org.openc...

java 图像的直方图均衡化

1

bmp图像的直方图均衡化

#include #include unsigned char *pBmpBuf;//读入图像的数据指针 int bmpWidth;//图像的宽 int bmpHeight;//图像的高 ...

rgb图像的直方图均衡化

目录 Matlab中imhist Matlab中实现imhist_rgb 结果 最后 Matlab中imhist Error using imhist Expected input num...

【OpenCV】图像变换(六)对数极坐标变换LogPolar&直方图均衡EqualizeHist

(1)Log-Polar变换 对于二维图像,Log-polar转换表示从笛卡尔坐标到极坐标的变换。关于笛卡尔坐标向极坐标的变换,这个数学上的变换,我相信在中学很多人就明白,在这里就不做过多的赘述。 ...

直方图均衡化

作用:这种方法通常用来增加许多图像的全局对比度,尤其是当图像的有用数据的对比度相当接近的时候。通过这种方法,亮度可以更好地在直方图上分布。这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡...
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)