xjp_xujiping的博客

私信 关注
无止境x
码龄6年

潜心学习,虚心求教

  • 623,893
    被访问量
  • 304
    原创文章
  • 5,769
    作者排名
  • 1,787
    粉丝数量
  • 毕业院校 北方工业大学
  • 于 2015-05-31 加入CSDN
获得成就
  • 获得201次点赞
  • 内容获得98次评论
  • 获得822次收藏
荣誉勋章
兴趣领域
  • #算法
    #TensorFlow#迁移学习#PyTorch#集成学习#CV(computer vision)
TA的专栏
  • 人工智能
    12篇
  • for job
    12篇
  • 机器学习
    12篇
  • 医学图像
    1篇
  • 图像质量评价IQA
    3篇
  • 工具
    12篇
  • 广告算法
    3篇
  • 刷题
    2篇
  • Numpy
    5篇
  • 数据增强
    1篇
  • 文献阅读
    1篇
  • 深度学习
    84篇
  • Super Resolution(超分辨)
    34篇
  • 数据结构-学习博文
    65篇
  • 最新前沿
    5篇
  • 知原理
    3篇
  • 编程知识
    10篇
  • c/c++
    18篇
  • 蓝桥杯
    53篇
  • 待改进
    1篇
  • 基本知识
    8篇
  • Android
    5篇
  • 大数据
    1篇
  • QT编程
    2篇
  • 嵌入式软件开发
    40篇
  • 物联网
    2篇
  • Linux
    42篇
  • 数据结构复习
    2篇
  • 复试练习
    27篇
  • 日常应用
    2篇
  • Python
    52篇
  • TensorFlow
    38篇
  • Matlab
    3篇
  • 图像处理
    48篇
  • 作业任务
  • 人工智能课程
    4篇
  • 备忘录
  • 代码工具
    1篇
  • 计算机英语
  • 高级算法
    2篇
  • 计算机视觉
    21篇
  • 计算机日常应用
    2篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

基于注意力机制超分辨率汇总

1、Channel Attention and Multi-level Features Fusion for Single Image Super-Resolution ,2018[arXiv]https://arxiv.org/pdf/1810.06935v1.pdf人工智能图像超分辨率单图像超分辨率的通道注意和多级特征融合方法http://www.sohu.com/a/260019811_100177858Channel Attention and Multi-level Featu...
转载
39阅读
0评论
0点赞
发布博客于 6 天前

plt.scatter散点图

函数的原型:matplotlib.pyplot.scatter(x,y,s=None,c=None,marker=None,cmap=None,norm=None,vmin=None,vmax=None,alpha=None,linewidths=None,verts=None,edgecolors=None,*,data=None,**kwargs)参数的解释:x,y:表示的是大小为(n,)的数组,也就是我们即将绘制散点图的数据点s:是一个实数或者是一个数...
原创
28阅读
0评论
0点赞
发布博客于 8 天前

module ‘yaml‘ has no attribute ‘FullLoader‘

module 'yaml' has no attribute 'FullLoader'权限拒绝,一般这种情况 是由于代码中用到的某些文件正在被其他软件所使用,不能更改或读取上述错误,则是我的程序已经占用了PyYAML当我执行更新时:pip install -U PyYAML就发生了权限错误:PermissionError: [Errno 13] Permission denied: 'c:\\users\\dell\\appdata\\local\\continuum\\anaconda3
原创
124阅读
0评论
0点赞
发布博客于 1 月前

存储和读取海量图像的方法

https://realpython.com/storing-images-in-python/翻译:老齐为什么必须要了解更多用Python存储和访问图像的方法?如果你的业务只用到少量图片,比如根据图像的色彩分类,,或者用OpenCV实现人脸识别,这时完全不用担心这个问题了。即使借助Python的PIL,也能轻松处理几百张照片,把图像以.png或.jpg文件的形式存储在磁盘上,简单方便又恰当。然而,现实的任务不都如此,比如卷积神经网络(CNN)等算法可以处理包含大量图像的数据集,还可以从中学习。
转载
82阅读
0评论
0点赞
发布博客于 1 月前

顺序表:两集合的交集

【项目 - 求集合并集】   假设有两个集合 A 和 B 分别用两个线性表 LA 和 LB 表示,即线性表中的数据元素即为集合中的成员。设计算法,用函数unionList(List LA, List LB, List &LC )函数实现该算法,求一个新的集合C=A∪B,即将两个集合的并集放在线性表LC中。 list.h #ifndef LIST_H_INCLUDED#define LI
原创
2311阅读
0评论
0点赞
发布博客于 6 年前

【顺序表项目1 - 顺序表的基本运算】

顺序表的基本运算本项目由三个文件组成,完成了用数组创建线性表,输出线性表,判定是否为空表德尔功能,线性表初学有些困难,但却是数据结构中很重要的一部分知识点,希望我们在多加练习的基础上,熟练掌握线性表的应用/*   Copyright (c) 2015, 烟台大学计算机与控制工程学院   All rights reserved.   文件名称:project:xianxingbi
原创
392阅读
0评论
0点赞
发布博客于 6 年前

Lena——计算机视觉中的女神被人忽视的部分

数字图像处理中,Lena(Lenna)是一张被广泛使用的标准图片,特别在图像压缩的算法研究中。(为什么用这幅图,是因为这图的各个频段的能量都很丰富:即有低频(光滑的皮肤),也有高频(帽子上的羽毛),很适合来验证各种算法)然而,这张图片背后的故事是颇有意思的,很多人都抱有学究都是呆子的看法,然而Lena对此就是一个有力的驳斥。lena(lenna)是一张于1972年11月出...
转载
3738阅读
1评论
0点赞
发布博客于 2 年前

Tensorflow读取图片并转换成张量

使用神经网络对图片文件进行训练时,需要将图片信息转换为张量,这里介绍如何将图片信息转化为Tensorflow的张量信息。本文完整代码:https://github.com/iapcoder/TensorflowReadIMG一 步骤1、构造文件队列file_queue = tf.train.string_input_producer(file_list, shuffle=Tru...
转载
682阅读
1评论
0点赞
发布博客于 2 年前

Tensorflow中将图像转化为张量(图像->tensor->numpy N维数组对象ndarray)

一、Tensorflow中读取图像步骤1、通过函数read_file读取本地的图像文件2、利用函数decode_jpeg解码为张量二、以代码做实例的讲解1、图像数据为猫的图片2、代码讲解# -*- coding: utf-8 -*-import tensorflow as tfimport matplotlib.pylab as plt# 读取数据文件i...
转载
1148阅读
0评论
0点赞
发布博客于 2 年前

【技术综述】深度学习中的(图像)数据增强方法都有哪些?

很多实际的项目,我们都难以有充足的数据来完成任务,要保证完美的完成任务,有两件事情需要做好:(1) 寻找更多的数据。(2) 充分利用已有的数据进行数据增强,今天就来说说数据增强。什么是数据增强?数据增强也叫数据扩增,意思是在不实质性的增加数据的情况下,让有限的数据产生等价于更多数据的价值。比如上图,第 1 列是原图,后面 3 列是对第 1 列作一些随机的裁剪、旋转操作得来。...
原创
1863阅读
0评论
1点赞
发布博客于 2 年前

windows系统在不同目录下快速打开cmd命令行界面

windows系统本身具有良好的界面支持,对用户来说具有良好的操作性,但是对于开发人员来说有时候又有一些不便。有时候我们经常需要在cmd命令行界面下进行一些操作,这就带来了一些的不便。通常网络中很多的方法是修改注册表以便在右击菜单中添加“cmd命令行”快捷操作,但是windows本身就自带了一些鲜为人知的快捷操作;操作方法是:按住 shift + 单击鼠标右键         ...
转载
256阅读
0评论
0点赞
发布博客于 3 年前

Android高级之xUtils框架(一):ViewUtils的用法

xUtils 一个 Android 公共库框架,主要包括四个部分:View,Db, Http, Bitmap 四个模块。View 模块主要的功能是通过注解绑定 UI,资源,事件。Db 模块是一个数据库 orm 框架, 简单的语句就能进行数据的操作。Http 模块主要访问网络,支持同步,异步方式的请求,支持文件的下载。Bitmap 模块是加载图片以及图片的处理, 支持加载本地,网络图片。而且支持图片...
转载
435阅读
0评论
0点赞
发布博客于 3 年前

Zotero使用

谈到知识管理,很多小伙伴或许对 Zotero 不太熟悉,偶尔尝试也卡在上手的那几个关键小步骤,导致回避好的方法与工具,沿用从前的习惯干苦力活。本文将带你了解 Zotero 的安装与配置,配图较多,适合新手入门。Zotero 是一款极其优秀的开源知识管理软件,同时也是开智学堂信息分析课程力荐的神器之一,将带你接触到许多信息获取、知识管理的优秀内隐知识,接下来就让我们开始探奇吧!一、注册Zot...
原创
3522阅读
1评论
2点赞
发布博客于 2 年前

马虎的算式

标题: 马虎的算式    小明是个急性子,上小学的时候经常把老师写在黑板上的题目抄错了。    有一次,老师出的题目是:36 x 495 = ?    他却给抄成了:396 x 45 = ?    但结果却很戏剧性,他的答案竟然是对的!!    因为 36 * 495 = 396 * 45 = 17820    类似这样的巧合情况可能还有很多,比如:27 *
原创
310阅读
0评论
0点赞
发布博客于 4 年前

图像插值技术——双线性插值法

https://www.cnblogs.com/gshang/p/12968496.html在图像处理中,如果需要对图像进行缩放,一般可以采取插值法,最常用的就是双线性插值法。本文首先从数学角度推导了一维线性插值和二维线性插值的计算过程,并总结了规律。随后将其应用到图像的双线性插值上,利用Matlab编程进行图像的缩放验证,实验证明,二维线性插值能够对图像做出较好的缩放效果。数学角度的线性插值一维线性插值假设有一个一元函数y=f(x)y=f(x), 已知曲线上的两点,AA和BB...
转载
71阅读
0评论
0点赞
发布博客于 2 月前

网络安全与机器学习(二):网络安全任务如何结合机器学习?

网络安全任务和机器学习让我们看看常见的网络安全任务和机器学习结合的机会,而不是查看ML任务并尝试将它们应用于网络安全。具体我们需要考虑三个维度(Why,What和How)。第一个维度是目标或任务(例如,检测威胁,攻击预测等)。根据Gartner的PPDR模型,所有安全任务可分为五类:预测; 预防; 检测; 响应; 监测。第二个维度是技术层和“什么”问题的答案(例如,在哪个级别监控问题),以下是此维度的图层列表:网络(网络流量分析和入侵检测); 端点(反恶意软件); 应用程序(W
转载
98阅读
0评论
0点赞
发布博客于 2 月前

网络安全与机器学习(一):网络安全中的机器学习算法

摘要:网络安全遇见机器学习,会摩擦出怎样的火花呢?相当多的文章已经描述了机器学习在网络安全的应用以及保护我们免受网络攻击的能力。尽管如此,我们仍然需要仔细研究人工智能(AI)、机器学习(ML)和深度学习(DL),它们到底能不能像炒作内容所说的无所不能。首先,我要让你失望了。我通过研究发现与图像识别或自然语言处理相比,机器学习永远不会成为网络安全的灵丹妙药,而这两个领域的机器学习应用正在蓬勃发展。因为总会有人试图找到系统或ML算法的弱点并绕过安全机制。更糟糕的是,现在黑客能够利用机器学习来完成他们邪.
转载
135阅读
0评论
0点赞
发布博客于 2 月前

机器学习、深度学习、和AI算法可以在网络安全中做什么?

现在已经出现了相当多的文章涉及机器学习及其保护我们免遭网络攻击的能力。尽管如此,我们也要清楚的去将理想与现实分开,看看机器学习(ML),深度学习(DL)和人工智能(AI)算法到底可以在网络安全中做什么。首先,我必须让你失望,因为我们必须承认的是,尽管机器学习在图像识别或自然语言处理这两个领域取得了不错的成绩,但机器学习绝不会成为网络安全的silver bullet(银弹:喻指新技术,指人们寄予厚望的某种新科技)。总会有人试图在我们的系统中发现问题并试图绕过它们。更糟糕的是,这些先进的技术也正在被黑客们使
转载
127阅读
0评论
0点赞
发布博客于 2 月前

人工智能在5G网络中的应用

摘 要:随着5G的商业化运行,通信网络运营正面临巨大挑战,传统运维管理方式难以适应5G空前庞大的网络规模、复杂的网络结构、激增的网络流量和多元化动态业务等新的需求,成为制约5G应用推广和效能提升的最大瓶颈。人工智能近年来发展迅猛,在许多传统行业成功应用。将人工智能应用于5G网络,可以有效提升网络的自动化、自主化程度,使过去的“傻瓜式”网络逐步向“智能化”的自动运行网络演进,为5G的商业化部署和更新迭代扫清障碍。关键词: 5G;人工智能;智能通信网络目录引 言1. 5G概述及发展现状2.
转载
159阅读
0评论
0点赞
发布博客于 2 月前

Keras使用TensorBoard

TensorBoardkeras.callbacks.tensorboard_v1.TensorBoard(log_dir='./logs', histogram_freq=0, batch_size=32, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=N
原创
41阅读
0评论
0点赞
发布博客于 2 月前

机器学习(周志华)学习笔记 - 数据集的划分方法

数据集D划分成训练集S和测试集T的方法1. 留出法 (hold - out) 直接将数据集D划分成两个互斥的集合,其中一个集合作为训练集S, 另一个集合作为训练集T 在进行训练集和测试集的划分时,尽可能保持数据划分的一致性,避免因数据划分过程中额外的偏差而对最终的结果产生影响。① 保持样本的类别比例相似 D中1000个样本 500个正例子, 500个反例 ② 70%作为训练集 则挑 S 350...
原创
132阅读
0评论
0点赞
发布博客于 2 月前

如何保存 Keras 模型

保存/加载整个模型(结构 + 权重 + 优化器状态)不建议使用 pickle 或 cPickle 来保存 Keras 模型。你可以使用model.save(filepath)将 Keras 模型保存到单个 HDF5 文件中,该文件将包含:模型的结构,允许重新创建模型 模型的权重 训练配置项(损失函数,优化器) 优化器状态,允许准确地从你上次结束的地方继续训练。你可以使用keras.models.load_model(filepath)重新实例化模型。load_model还将负责...
原创
114阅读
0评论
0点赞
发布博客于 2 月前

EfficientNet 解析:卷积神经网络模型尺度变换的反思

原标题 |EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks作 者 |Aakash Nain自 AlexNet 赢得 2012 年 ImageNet 的竞赛以来,CNN(卷积神经网络的缩写)已成为深度学习中各种任务(尤其是计算机视觉)的实用算法。从2012年至今,研究人员一直在试验并试图提出更好的架构,以提高模型对不同任务的准确性。今天,我们将深入探讨最新的研究论文"高效网络(Efficient...
转载
177阅读
0评论
0点赞
发布博客于 3 月前

什么是红黑树?

什么是红黑树?红黑树问题一:红黑树的特性和优势 在什么情况下需要变色,什么情况下需要旋转?————————————要学习红黑树,需要先理解二叉查找树二叉查找树(BST)具备什么特性呢?1.左子树上所有结点的值均小于或等于它的根结点的值。 2.右子树上所有结点的值均大于或等于它的根结点的值。 3.左、右子树也分别为二叉排序树。下图中这棵树,就是一颗典型的二叉查找树:1.查看根节点9:2.由于10 ..
转载
88阅读
0评论
0点赞
发布博客于 3 月前

电信春招面试技能,无领导小组讨论

2019电信春招面试技能,无领导小组讨论今天小编就无领导小组讨论给大家讲一个面试技能~大家看完之后应该会有所收获哦~无领导小组讨论对于很多考生而言都是大难题,应该如何应对呢,无领导的技能到底在哪里呢?中公国企小编经过调研之后,为各位考生提供实用的辅导。第一,说话声音大,节奏不急不慢虽说观点新颖、独到是关键,但是除此之外,我们要做好外在,一方面是声音洪亮。声音洪亮能够让我们显得底气足、气势强。另一方面是节奏不急不慢。在无领导考场上,很多考生往往会因为场面激烈而变得激动、情绪失控,不自觉地.
转载
83阅读
0评论
0点赞
发布博客于 3 月前

无领导小组讨论(一)

无领导小组讨论是近几年三大运营商面试中经常使用的一种测评技术,采用情景模拟的方式对考生进行集体面试。6至8人一个小组,在一定的时间内围绕给定的题目进行讨论,讨论过程中不指定谁是领导,讨论过程中观察考生的组织协调能力、语言表达能力,说服能力等各方面的能力和素质是否达到拟任岗位的要求以及自信程度、进取心、情绪稳定性、反应灵活性等个性特点是否符合拟任岗位的团体气氛,以此来综合评价考生。无领导小组讨论面试包括提纲准备 个人陈述 自由讨论 总结陈词四个环节,而其中最关键的就是自由讨论阶段。.
转载
138阅读
0评论
0点赞
发布博客于 3 月前

深度学习实现无人机目标检测

人工智能机器人公司利用深度学习轻松实现无人机图像目标检测,通过无人机来检测房屋建筑施工进程。我们都知道在人工智能的浪潮下,图像识别、计算机视觉得到高速发展,通常我们熟知的无人机只是用来进行航拍,那除了航拍它还能做些什么呢?人工智能+无人机又会产生什么火花呢?无人机一般适合一些复杂的环境大到救灾,勘测地形,小到航拍,适用于很多行业。2018年9月份,世界海关组织协调制度委员会(HSC)第62次会议决定,将无人机归类为“会飞的照相机,这就赋予无人机一个重要角色——拍照。现在无人机不仅仅只会拍照,基.
原创
588阅读
0评论
0点赞
发布博客于 3 月前

基于图像的三维物体重建:深度学习时代的最新技术和趋势(概述和编码)

基于图像的三维物体重建:深度学习时代的最新技术和趋势(概述和编码)点击上方“3D视觉工坊”,选择“星标”干货第一时间送达概述三维重建是一个长期存在的不适定问题,已经被计算机视觉、计算机图形学和机器学习界探索了几十年。自2015年以来,利用卷积神经网络(CNN)进行基于图像的三维重建引起了越来越多的关注,并且表现非常出色。鉴于这一快速发展的新时代,本文全面综述了这一领域的最新发展,重点研究了利用深度学习技术从单个或多个RGB图像中估计一般物体三维形状的方法。1.简介基于图像的三维.
转载
71阅读
0评论
0点赞
发布博客于 3 月前

人工智能助力三维几何自动化建模

传统数字化建模软件的局限无论是工业、科研还是生活娱乐中,越来越多的场合都离不开数字化三维几何建模技术。传统的数字化建模方法需要工程师熟练掌握并使用非常专业的建模软件,如:3DMAX,AutoCAD等。这些软件基于几何算法,便于建立形状规则或变形规律的几何模型;但对于不规则的复杂几何形状(如:人体组织)等就显得相形见绌。但无论是工业中精密部件的受力分析,还是医疗上3D打印骨组织替代物都需要高精度和还原度的数字几何模型。工程师通常需花费总工作量1/3以上的时间去完善模型提高精度,费时耗力。..
转载
184阅读
0评论
0点赞
发布博客于 3 月前

中国电信正式发布5G定制网

文章来源:中国电信集团有限公司  发布时间:2020-11-1011月7日,在第十二届天翼智能生态博览会高峰论坛上,中国电信正式对外发布5G定制网。中国电信全新发布“网定制、边智能、云协同、应用随选”的5G定制网解决方案及《中国电信5G定制网产品手册》,提供“致远”“比邻”“如翼”三类定制网服务模式。5G定制网是企业信息基础设施的深刻变革和全面升级,是以5G网络为基础,对连接、计算和智能等全部数字化能力的“融合定制”。此次中国电信推出的5G定制网,将通过5G+边+云+X,打造一体化定制融合服务,
转载
114阅读
0评论
0点赞
发布博客于 3 月前

高斯滤波原理及python代码(opencv代码)

Reference:https://blog.csdn.net/angelia_yue/article/details/1057943441.什么是高斯滤波高斯滤波器是一种线性滤波器,能够有效的抑制噪声2.高斯滤波作用高斯滤波器对于抑制服从正态分布的噪声非常有效3.计算步骤1. 根据高斯函数和像素点的位置,计算滤波器每个点的值,对滤波器的值做归一化,得到权重矩阵2. 图像中的区域每个点滤波器矩阵的值3. 对得到的计算结果的矩阵求和,得到的和就是原图像矩阵中心点的滤波...
原创
293阅读
1评论
0点赞
发布博客于 3 月前

图像边缘检测-Canny,Sobel等算子

一.前言首先我们先来简单了解一下什么是数字图像处理(Digital Image Processing),先看一下数字图像主要的两个应用领域:1.改善图示信息以便人们解释;2.为存储、传输和表示而对图像数据进行处理,以便于机器自动理解我们可以简单理解为就将一幅原始图像,使用计算机处理为更为我们所能理解或所需要的形式,如图1-1所示,为基于边缘检测的免疫细胞图像自动分割过程示意图图 1-1 克隆细胞图像自动分割过程示意图让我们再看一个例子,如图1-2 ,为经典的车牌检测算法,将原始图
转载
332阅读
0评论
1点赞
发布博客于 3 月前

遥感图像处理流程

一.预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 图1 消除噪声前 ...
转载
219阅读
0评论
1点赞
发布博客于 3 月前

高斯滤波详解 附python和matlab高斯滤波代码

https://blog.csdn.net/angelia_yue/article/details/105794344https://www.jianshu.com/p/4eaf349de9e9一. 高斯滤波高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声。高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于...
转载
163阅读
0评论
0点赞
发布博客于 3 月前

COCO数据集概述

COCO数据集概述COCO的全称是Common Objects in Context,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。其行业地位就不再多少了,本文主要梳理一下该数据集包含的内容。下图是官网给出的可下载的数据集(更新时间2020年01月09日),从这里可看出其数据集主要包括有标注的和无标注的数据:2014:训练集 + 验证集 + 测试集 2015:测试集 2017:训练集 + 验证集 + 测试集PK的内容包括:目标检测与
转载
187阅读
0评论
0点赞
发布博客于 3 月前

VOC数据集

概述Pascal VOC2012作为基准数据之一,在对象检测、图像分割网络对比实验与模型效果评估中被频频使用,但是如果没有制作过此格式的数据集就会忽略很多细节问题,今天我们一起来从头到尾扒一扒Pascal VOC2012 数据集各种细节问题。Pascal VOC2012数据集主要是针对视觉任务中监督学习提供标签数据,它有二十个类别:Person:personAnimal:bird, cat, cow, dog, horse, sheepVehicle:aeroplane, bicy.
转载
93阅读
0评论
0点赞
发布博客于 3 月前

详解softmax函数以及相关求导过程

这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流!一、softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是更形象的如下图表示:softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那..
转载
110阅读
0评论
0点赞
发布博客于 4 月前

最全攻略:人工智能如何看懂激光雷达点云

SqueezeSegNetwork structure of SqueezeSegSqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud​arxiv.org简介:将激光点云沿圆柱面投影展开为深度图转化为2D图像处理。逐个像素人工构造特征(x,y,z,intensity,distance),使用2D FCN做
转载
205阅读
0评论
0点赞
发布博客于 4 月前

用Python打造无人驾驶车-激光雷达数据(1)

ROS环境安装ROS/Tutorials - ROS WikiROS数据包Udacity Didi Challenge - Round 2 Dataset前言:激光雷达是无人驾驶车的一个重要数据源,同时也是最难处理的数据之一。相对于图像数据而言,激光雷达有着更可靠的深度数据。特斯拉的辅助驾驶系统曾因为过度依赖图像数据产生的误判而造成严重的事故,而有了激光雷达之后,就可以避免因为图像造成的误判。本文将介绍如何初步的处理激光雷达生成的点云数据。数据可视化在处理数据之前,让我们先来看看原始
转载
327阅读
0评论
0点赞
发布博客于 4 月前

5G和人工智能存在递进关系,两者相辅相成!

摘要:5G和人工智能是两种不同领域的概念,5G是快速无线传播信息和数据的通讯技术,人工智能是具备独立思考能力的计算机程序。近年来,人工智能无论是企业还是资本界都被狂热的追逐,人工智能已经站到了强有力的风口之上,人们在关注人工智能的同时不要忽略5G网络技术在其领域的应用。本文重点讲解5G和人工智能两者之间存在的关系。目前,人工智能主要依靠云计算和终端处理。终端会对自身的大量信息进行处理和提炼,然后进入云端的人工智能大脑进行统一处理。然而,由于终端处理能力和网络传输能力有限,目前的人工智能速度较慢,智能..
转载
263阅读
1评论
0点赞
发布博客于 4 月前

python3浅拷贝与深拷贝的区别和理解

首先,我们知道Python3中,有6个标准的数据类型,他们又分为可变和不可变。不可变数据(3个):Number(数字) String(字符串) Tuple(元组)可变数据(3个):List(列表) Dictionary(字典) Set(集合)浅拷贝和深度拷贝 总结浅拷贝copy模块里面的copy方法实现1、对于不可变类型 Number String Tuple,浅复制仅仅是地址指向,不会开辟新空间。但是如果改变了值就会创建新地址 2、对于可变类型 List、Dictio
原创
40阅读
0评论
0点赞
发布博客于 4 月前

使用Python对Dicom文件进行读取与写入的实现(pydicom 和 SimpleITK)

这篇文章主要介绍了使用Python对Dicom文件进行读取与写入的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧使用Pydicom单张影像的读取使用 pydicom.dcmread() 函数进行单张影像的读取,返回一个pydicom.dataset.FileDataset对象.import osimport pydicom# 调用本地的 dicom filefolder_path = r"D:\Fi.
转载
657阅读
1评论
0点赞
发布博客于 4 月前

Xshell命令行:上传下载远程服务器文件

Xshell如何连接远程Linux服务器,之前的博客中已经提及到了,可以看我之前的博客。我们知道我们经常需要向服务器上传文件,或者从服务器下载文件,rz和sz命令可以满足我们的要求,只不过默认情况下是不能使用的,我们需要使用yum install lrzsz来安装,如下图所示。然后上传文件到远程服务器:rz然后将文件下载到本地:sz下载完成:在本地查看:Reference:https://blog.csdn.net/IBLiplus/article/.
原创
49阅读
0评论
0点赞
发布博客于 4 月前

Keras 指定多个GPU,使用多个GPU训练

Keras 指定多个GPUimport keras.backend.tensorflow_backend as KTFimport tensorflow as tfimport osos.environ["CUDA_VISIBLE_DEVICES"] = "0,1,4,5,8,9"使用多个GPU训练数据并行 (multi_gpu_modelhttps://keras-zh.readthedocs.io/utils/)数据并行包括在每个设备上复制一次目标模型,并使用每个模型副本..
原创
344阅读
1评论
0点赞
发布博客于 4 月前

深度学习训练已经停止(强行中断)了,可GPU内存还在占用着,如何解决?

watch --color -n1 gpustat -cpu用户:xujiping 已经结束训练了,但是GPU的内存仍然在占用top:查看进程U :输入用户名找到 python train.py 的进程号ctrl + c 退出kill -9 进程号:杀死残留的进程这时占用的GPU内存就被释放了reference:https://blog.csdn.net/u014264373/article/details/108106316...
原创
355阅读
0评论
0点赞
发布博客于 4 月前

keras系列︱keras是如何指定显卡且限制显存用量(GPU/CPU使用)

keras在使用GPU的时候有个特点,就是默认全部占满显存。 若单核GPU也无所谓,若是服务器GPU较多,性能较好,全部占满就太浪费了。 于是乎有以下五种情况:1、指定GPU 2、使用固定显存的GPU 3、指定GPU + 固定显存 4 GPU动态增长 5 CPU充分占用一、固定显存的GPU本节来源于:深度学习theano/tensorflow多显卡多人使用问题集(参见:Limit the resource usage for tensorflow backend · Issue #1538
转载
60阅读
0评论
0点赞
发布博客于 4 月前

斯坦福CS231n—深度学习与计算机视觉(资料汇总)

官网链接:CS231n: Convolutional Neural Networks for Visual RecognitionNotes:链接:http://cs231n.github.io/中文字幕视频 by 大数据文摘链接:http://study.163.com/course/courseMain.htm?courseId=1003223001课件中文翻译 by 杜克链接:https://www.52ml.net/tags/cs231课件英文视频及字幕等 by 爱可
转载
53阅读
0评论
0点赞
发布博客于 4 月前

图像质量评价指标之PSNR和SSIM

https://www.cnblogs.com/seniusen/p/10012656.html
转载
45阅读
0评论
0点赞
发布博客于 4 月前

模型训练错误:Failed to get convolution algorithm,This is probably because cuDNN failed to initialize.

模型训练错误:Failed to get convolution algorithm,This is probably because cuDNN failed to initialize.一、问题: 最近在利用keras训练模型的时候出现以下错误,开始一看以为是cuDNN的版本不对,更换后还是没有效果,后面在网上查找后发现是显存的问题,更改为动态分配内存就可以了。 二、解决方法: 在训练的脚本开头添加以下代码进行动态分配内存,然后重新运行就可以。...
转载
45阅读
0评论
0点赞
发布博客于 5 月前

<美团>过拟合

过拟合:在机器学习模型训练或者深度学习模型训练的过程中,会出现模型在训练集上表现能力好,但是在测试集上表现欠佳,这种现象就是过拟合,常常主要原因是由于数据集中存在噪音数据或者训练样本维度太少或者训练集数量太少导致的。解决方案:增强训练样本集; 增加样本集的维度; 如果模型复杂度太高,和训练样本集的数量级不匹配,此时需要降低模型复杂度; 正则化,尽可能减少参数; 添加Dropout...
原创
25阅读
0评论
0点赞
发布博客于 5 月前

<美团>深度学习训练中梯度消失的原因有哪些?有哪些解决方法?

梯度消失产生的主要原因有:一是使用了深层网络,二是采用了不合适的损失函数。(1)目前优化神经网络的方法都是基于BP,即根据损失函数计算的误差通过梯度反向传播的方式,指导深度网络权值的更新优化。其中将误差从末层往前传递的过程需要链式法则(Chain Rule)的帮助。而链式法则是一个连乘的形式,所以当层数越深的时候,梯度将以指数形式传播。梯度消失问题一般随着网络层数的增加会变得越来越明显。在根据损失函数计算的误差通过梯度反向传播的方式对深度网络权值进行更新时,得到的梯度值接近0,也就是梯度消失。(2)
原创
32阅读
0评论
0点赞
发布博客于 5 月前

梯度消失和梯度爆炸的原因和解决办法

梯度消失与梯度爆炸其实是一种情况,看接下来的文章就知道了。梯度消失经常出现,一是在深层网络中,二是采用了不合适的损失函数,比如sigmoid 梯度爆炸一般出现在深层网络和权值初始化值太大的情况下下面分别从这两个角度分析梯度消失和爆炸的原因。1.深层网络角度对激活函数进行求导,如果此部分大于1,那么层数增多的时候,最终的求出的梯度更新将以指数形式增加,即发生梯度爆炸, 如果此部分小于1,那么随着层数增多,求出的梯度更新信息将会以指数形式衰减,即发生了梯度消失。总结:从深层网络角度来讲,
转载
94阅读
0评论
0点赞
发布博客于 5 月前

视觉注意力机制 | Non-local模块与Self-attention的之间的关系与区别?

什么是视觉中的注意力机制?计算机视觉(computer vision)中的注意力机制(attention)的基本思想就是想让系统学会注意力——能够忽略无关信息而关注重点信息。近几年来,深度学习与视觉注意力机制结合的研究工作,大多数是集中于使用掩码(mask)来形成注意力机制。掩码的原理在于通过另一层新的权重,将图片数据中关键的特征标识出来,通过学习训练,让深度神经网络学到每一张新图片中需要关注的区域,也就形成了注意力。注意力机制一种是软注意力(soft attention),另一种则是强注意力(
转载
344阅读
0评论
0点赞
发布博客于 5 月前

Linux 常用命令

watch --color -n1 gpustat -cpu
原创
38阅读
0评论
0点赞
发布博客于 5 月前

【TensorBoard】如何启动tensorboard的详尽步骤

TensorBoard是TensorFlow下的一个可视化的工具,能够帮助我们在训练大规模神经网络过程中出现的复杂且不好理解的运算。TensorBoard能展示你训练过程中绘制的图像、网络结构等。启动TensorBoard的方法:第一步:定位到你训练后log文件保存的位置;第二步:cd 到log文件的上一级目录;即D:\PycharmProjects\python35\object_detection第三步:键入命令行,启动TensorBoard;...
原创
67阅读
0评论
0点赞
发布博客于 5 月前

新建空列表的方法

#新建空列表的方法lableList1 = [0] * 10print(lableList1)# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]labelList2 = [[]] * 10print(labelList2)#[[], [], [], [], [], [], [], [], [], []]
原创
73阅读
0评论
0点赞
发布博客于 5 月前

准确度、精确度、召回率、ROC曲线、AUC值

https://blog.csdn.net/maqian5/article/details/94392049?utm_medium=distribute.pc_relevant.none-task-blog-title-3&spm=1001.2101.3001.4242https://blog.csdn.net/sunflower_sara/article/details/81214897#%E7%B2%BE%E7%A1%AE%E7%8E%87%C2%A0%2F%C2%A0precision%2
原创
153阅读
0评论
0点赞
发布博客于 5 月前

医学病理图像:细胞间质与间质细胞的区别

1、定义区别:间质细胞是:这个器官内存在的那些辅助实质细胞完成器官功能的细胞。细胞间质是:由细胞产生的不具有细胞形态和结构的物质,它包括纤维、基质和流体物质(组织液、淋巴液、血浆等)。2、作用不同:比如脑内的神经元细胞就是实质细胞,神经胶质细胞起支持营养神经细胞的作用,算是一种间质细胞,再如肝脏细胞是实质细胞,肝小叶间的纤维细胞就是间质细胞,起支持作用。细胞间质对细胞起着支持、保护、连结和营养作用,参与构成细胞生存的微环境。扩展资料:细胞间质是人体细胞所生活的液.
原创
834阅读
0评论
0点赞
发布博客于 5 月前

各种< 熵 >总结

一.什么是熵Ⅰ.信息量首先考虑一个离散的随机变量x,当我们观察到这个变量的一个具体值的时候,我们接收到多少信息呢?我们暂时把信息看做在学习x的值时候的”惊讶程度”(这样非常便于理解且有意义).当我们知道一件必然会发生的事情发生了,比如往下掉的苹果.我们并不惊讶,因为反正这件事情会发生,因此可以认为我们没有接收到信息.但是要是一件平时觉得不可能发生的事情发生了,那么我们接收到的信息要大得多.因此,我们对于信息内容的度量就将依赖于概率分布p(x).因此,我们想要寻找一个函数h(x)来表示信息的多少且
转载
67阅读
1评论
0点赞
发布博客于 5 月前

方差、协方差、标准差、均方差、均方根值、均方误差、均方根误差对比分析

方差、协方差、标准差(标准偏差/均方差)、均方误差、均方根误差(标准误差)、均方根值本文由博主经过查阅网上资料整理总结后编写,如存在错误或不恰当之处请留言以便更正,内容仅供大家参考学习。 方差(Variance) 方差用于衡量随机变量或一组数据的离散程度,方差在在统计描述和概率分布中有不同的定义和计算公式。①概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度;②统计中的方差(样本方差)是每个样本值与全体样本均值之差的平方值的平均数,代表每个变量与总体均值间的离散程度...
转载
161阅读
0评论
0点赞
发布博客于 5 月前

统计学:偏度和峰度的概念与计算

偏度偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。定义上偏度是样本的三阶标准化矩。偏度定义中包括正态分布(偏度=0),右偏分布(也叫正偏分布,其偏度>0),左偏分布(也叫负偏分布,其偏度<0)。峰度峰度(peakedness;kurtosis)又称峰态系数。表征概率密度分布曲线在平均值处峰值高低的特征数。直观看来,峰度反映了峰部的尖度。随机变量的峰度计算方法为:随机变量的四阶中心矩与方差平方的比值。峰度包括.
原创
1554阅读
0评论
1点赞
发布博客于 5 月前

机器学习部分:距离的度量(欧氏距离,曼哈顿距离,夹角余弦距离,切比雪夫距离,汉明距离,闵可夫斯基距离,马氏距离)

目录距离计算方法1.欧式距离EuclideanDistance2. 曼哈顿距离(ManhattanDistance)3. 夹角余弦4.切比雪夫距离(Chebyshevdistance)5. 汉明距离(Hamming Distance)6. 闵可夫斯基距离(Minkowski Distance)7. 马氏距离(Mahalanobis Distance)在数据挖掘中,我们经常需要计算样本之间的相似度(Similarity ),我们通常的做法是计算样本之间的距离,本文对距离.
转载
176阅读
0评论
0点赞
发布博客于 5 月前

图像超分辨率重建之SRCNN

图像超分辨率重建:指通过低分辨率图像或图像序列恢复出高分辨率图像。高分辨率图像意味着图像具有更多的细节信息、更细腻的画质,,这些细节在高清电视、医学成像、遥感卫星成像等领域有着重要的应用价值。Super-Resolution Convolutional Neural Network:本篇文章讲述的是深度学习在图像超分辨率重建问题的开山之作SRCNN(Super-Resolution Convolutional Neural Network)。香港中文大学Dong等将卷积神经网络应用于单张图像超分辨率重建
转载
126阅读
0评论
0点赞
发布博客于 5 月前

OpenCV查找-绘制轮廓(cv2.findCountours函数,cv2.drawContours())

什么是轮廓轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。为了准确,要使用二值化图像。需要进行阀值化处理或者Canny边界检测。 查找轮廓的函数会修改原始图像。如果之后想继续使用原始图像,应该将原始图像储存到其他变量中。 在OpenCV中,查找轮廓就像在黑色背景中找白色物体。你应该记住,要找的物体应该是白色而背景应该是黑色。 如何在一个二值图像中查找轮廓。 函数cv2.findContours()有三个参数,第一个是输入
原创
85阅读
0评论
0点赞
发布博客于 5 月前

matplotlib.pyplot 显示散点

neighbors_result_xy:坐标(x,y)列表x:x坐标列表y:y坐标列表[[196, 527], [269, 383], [237, 541], [189, 395], [167, 538], [146, 531], [143, 458], [152, 435]][196, 269, 237, 189, 167, 146, 143, 152][527, 383, 541, 395, 538, 531, 458, 435]import matplotlib.pyplot.
原创
75阅读
0评论
0点赞
发布博客于 5 月前

注意力机制

https://github.com/HaloTrouvaille/YOLO-Multi-Backbones-Attention YOLO融合注意力机制 可以参考下NeuralNetworks 2020 | 哈工大与北大提出注意力引导的图像去噪mp.weixin.qq.com/s?__biz=MzIxOTczOTM4NA==&mid=2247490281&idx=2&sn=9d6eac5c230c98e37e56e933b293eee5&chksm=97d7ff7ea
原创
46阅读
0评论
0点赞
发布博客于 6 月前

keras运行时指定显卡及限制GPU用量

import osimport tensorflow as tfimport keras.backend.tensorflow_backend as KTF#进行配置,每个GPU使用60%上限现存os.environ["CUDA_VISIBLE_DEVICES"]="1,2" # 使用编号为1,2号的GPUconfig = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.6 # 每个GPU现存...
原创
76阅读
0评论
0点赞
发布博客于 6 月前

Linux系统下查找安装包所在目录的六种方法

想知道Linux系统下安装了哪些软件包,以及软件包安装在哪个目录下,可以用以下6种命令1. whichwhich命令查找出相关命令是否已经在搜索路径中,例子如下:$which gcc //显示出GNC的C编译器安装在哪个目录返回结果为:/usr/bin/gcc注意:如果which没有找到要找的命令,可以试试whereis,该命令搜索更大的范围的系统目录。有些系统上的which命令不显示用户没有执行权限的文件。例如$which ipppd/usr/bin/which :no ipppd i
转载
106阅读
0评论
0点赞
发布博客于 6 月前

baseline , benchmark ,SOTA

baseline [ˈbeɪslaɪn]基准,性能的起点baseline一词应该指的是对照组,基准线,就是你这个实验有提升,那么你的提升是对比于什么的提升,被对比的就是baseline。比如你要研究一个新的模型,你是在前人的模型基础上新增加了一些组件,别人也基本都是在这个模型上进行修改,那这个模型就叫做baseline model——基准模型。听名字就能听出来,就是你自己模型的一个基准,一个基本的框架,模型再复杂,最根本的框架是差不多的。Benchmark [ˈbentʃmɑːk] 基准,同行.
原创
103阅读
0评论
0点赞
发布博客于 6 月前

人脸算法系列:MTCNN人脸检测详解

本文的内容预览人脸检测的概念人脸检测是一种在多种应用中使用的计算机技术,可以识别数字图像中的人脸。人脸检测还指人类在视觉场景中定位人脸的过程。人脸检测可以视为目标检测的一种特殊情况。在目标检测中,任务是查找图像中给定类的所有对象的位置和大小。例如行人和汽车。人脸检测示例在人脸检测中应用较广的算法就是MTCNN( Multi-task Cascaded Convolutional Networks的缩写)。MTCNN算法是一种基于深度学习...
转载
208阅读
0评论
0点赞
发布博客于 6 月前

如何一步一步提高图像分类准确率,模型优化方法

https://zhuanlan.zhihu.com/p/29534841如何一步一步提高图像分类准确率一、问题描述当我们在处理图像识别或者图像分类或者其他机器学习任务的时候,我们总是迷茫于做出哪些改进能够提升模型的性能(识别率、分类准确率)。。。或者说我们在漫长而苦恼的调参过程中到底调的是哪些参数。。。所以,我花了一部分时间在公开数据集CIFAR-10 [1] 上进行探索,来总结出一套方法能够快速高效并且有目的性地进行网络训练和参数调整。CIFAR-10数据集有60000张图片,每张图片均
转载
224阅读
0评论
0点赞
发布博客于 6 月前

深度学习模型,有哪些最新的加速技术?

深度学习模型,有哪些最新的加速技术https://zhuanlan.zhihu.com/p/147204568
原创
71阅读
0评论
0点赞
发布博客于 6 月前

医学图像处理最全综述

目录0、引言1、病变检测2、图像分割基于深度学习的医学图像分割与检测3、图像配准图像配准的定义4、图像融合5、预测与挑战6、结论参考文献0、引言医学图像处理的对象是各种不同成像机理的医学影像,临床广泛使用的医学成像种类主要有X-射线成像 (X-CT)、核磁共振成像(MRI)、核医学成像(NMI)、超声波成像(UI)四类。在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,这往往需要借助医生的经验来判定。利用计算机图像处理技术对二维切片图象进行.
转载
689阅读
0评论
1点赞
发布博客于 6 月前

7.31日阿里笔试题目小强放牛

小强是一个农场主,农场里有n头牛,每头牛有着独一无二的体重,每一头牛的颜色可能是mmm种颜色其中的一种,小强带了一些牛(可能为000个)出来吃草。你需要回答出小强带出来的牛的组合一共有多少种可能?注意:因为一头牛有自己的体重(没有两头牛体重相等),所以如果四头牛的体重分别是1,2,3,41,2,3,41,2,3,4,颜色分别是y1,y2,y3,y4y_1, y_2, y_3, y_4y1​,y2​,y3​,y4​和另一种方案:四头牛的体重分别是1,2,3,41, 2, 3, 41,2,3,4,颜色分别是
原创
159阅读
0评论
0点赞
发布博客于 6 月前

PIL的使用

PIL的使用from PIL import Image, ImageFilter, ImageDraw1.加载图片图片对象 = Image.open(图片地址)2.使用滤镜image1.filter(滤镜效果)"""滤镜效果:ImageFilter.EMBOSS - 浮雕效果ImageFilter.FIND_EDGES - 泼墨效果ImageFilter.SHARPEN - 锐化滤波ImageFilter.SMOOTH - 平滑滤波ImageFilt
转载
52阅读
0评论
0点赞
发布博客于 6 月前

TypeError: crop() takes from 1 to 2 positional arguments but 5 were given

PIL的crop裁剪操作im_crop = im.crop(left,top,right,bottom)TypeError: crop() takes from 1 to 2 positional arguments but 5 were given解决之道:将crop中的left、top、right、bottom封装成一个元组 crop((left,top,right,bottom))...
原创
606阅读
0评论
0点赞
发布博客于 6 月前

「鹿班智能设计平台」是如何工作的

目录商业设计大脑的三大挑战可控的视觉生成过程机器如何学习设计组成一,设计框架。组成二,元素中心。组成三,行动器。组成四,评估网络。视觉设计的四个层次最基础的:临摹拓展。第二层:场景表达。第三层:创意洞见。最后一层:创造趋势。商业设计大脑的三大挑战在开始做事情之前,我们遇到了三个比较严峻的挑战。第一个挑战,缺少标注数据。今天所有的人工智能都基于大量的结构化标注数据,设计这件事情连数据都没有完成在线化,更别说标准化、结构化的数据了。 第二个挑战,设计
转载
189阅读
0评论
0点赞
发布博客于 6 月前

鹿班:关键技术点-核心步骤-挑战

鹿班的几个关键技术点一是图像算法“抠图”。因为高质量的广告设计需要把商品图片抠出来,放到精美的设计主题里。以前都是设计师给商品抠图后再做设计,现在我们用机器做海量设计,就得让机器来做这个事情。我们跟阿里搜索部门做图像切割的算法团队合作,处理海量的商品自动抠图。 第二点是把设计变成“数据”。一张广告设计图片是像素组成的“信息”,不是“数据”。我们利用机器把商品、文字和设计主题进行在线合成,这样每张广告图片就带上了商品信息,可以根据消费者偏好进行个性化投放。所以鹿班产品上线初期,我们请设计师根据活动主题做
原创
214阅读
0评论
0点赞
发布博客于 6 月前

做过10亿次设计的人工智能「鹿班」,原来是他负责的!

https://www.uisdc.com/responsible-for-the-design-of-luban这期节目我们请到了阿里巴巴智能设计实验室的负责人乐乘。这个智能设计实验室有个最著名的项目叫鲁班(现更名为鹿班),大家可以简单的把鹿班理解为一个人工智能设计师,去年这个名叫鹿班的智能设计师在双11期间为阿里绘制了4.1亿张各不相同的个性化广告图,而今年鹿班甚至开始学会设计网页了。人工智能会对设计这个行业造成怎样的影响,它会判断美丑吗?鹿班会像 AlphaGo 超越人类围棋手一样,在未来超...
转载
119阅读
0评论
0点赞
发布博客于 6 月前

推荐与广告 中的概念和指标

推荐与广告目录推荐与广告CTR(Click-Through-Rate)即点击通过率,是互联网广告常用的术语,基本介绍点击率点击量CVR (Conversion Rate): 转化率-用户点击广告到成为有效激活(或者注册甚至付费)的转化率CPC:平均点击消耗,消耗(点击费用),广告每次被点击的平均付费CPT(按时长付费),英文全称Cost Per TimeeCPM(effective cost per mile)指的是每一千次展示可以获得的广告收入,CTR(Clic
原创
100阅读
0评论
0点赞
发布博客于 6 月前

CodeBlocks常用操作快捷键

CodeBlocks常用操作快捷键编辑部分:Ctrl + A:全选Ctrl + C:复制Ctrl + X: 剪切Ctrl + V:粘贴Ctrl + Z:撤销(后退一步)Ctrl + S:保存Ctrl + Y / Ctrl + Shift + Z:重做(也就是前进一步)Ctrl+Shift+C:注释掉当前行或选中块Ctrl+Shift+X:解除注释(最新版的将其替换为截图功能)Tab:缩进当前行或选中块Shift+Tab:减少缩进按住Ctrl,滚动鼠标滚轮,
转载
52阅读
0评论
0点赞
发布博客于 7 月前

19种损失函数汇总

19种损失函数目录1. L1范数损失 L1Loss2 均方误差损失 MSELoss3 交叉熵损失 CrossEntropyLoss4 KL 散度损失 KLDivLoss5 二进制交叉熵损失 BCELoss6 BCEWithLogitsLoss7 MarginRankingLoss8 HingeEmbeddingLoss9 多标签分类损失 MultiLabelMarginLoss10 平滑版L1损失 SmoothL1Loss11. 2分类的logistic损失
转载
106阅读
0评论
0点赞
发布博客于 7 月前

目标检测常用损失函数-类别损失+位置损失

目录类别损失1. 交叉熵损失 Cross Entropy Loss2. Focal Loss 改进的交叉熵损失函数位置损失1. L1 Loss平均绝对误差(Mean Absolute Error, MAE)2. L2 Loss均方误差损失(Mean Square Error, MSE)3. Smooth L1 Loss4. IoU Loss5. GIoU Loss6. DIoU Loss. CIoU Loss一般的目标检测模型包含两类损失函数,一...
转载
628阅读
0评论
2点赞
发布博客于 7 月前

目标检测最全综述

前言图片分类任务我们已经熟悉了,就是算法对其中的对象进行分类。而今天我们要了解构建神经网络的另一个问题,即目标检测问题。这意味着,我们不仅要用算法判断图片中是不是一辆汽车, 还要在图片中标记出它的位置, 用边框或红色方框把汽车圈起来, 这就是目标检测问题。 其中“定位”的意思是判断汽车在图片中的具体位置。近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN等),它
转载
460阅读
0评论
0点赞
发布博客于 7 月前

千奇百怪的 卷积 方式

目前仅列举了一些比较著名且实用的卷积操作,对于没提到的,希望大家指出与补充1. 原始版本最早的卷积方式还没有任何骚套路,那就也没什么好说的了。见下图,原始的 conv 操作可以看做一个 2D 版本的无隐层神经网络。附上一个卷积详细流程:【TensorFlow】tf.nn.conv2d 是怎样实现卷积的? - CSDN 博客代表模型:LeNet:最早使用 stack 单卷积 + 单池化结构的方式,卷积层来做特征提取,池化来做空间下采样AlexNet:后来发现单卷...
转载
60阅读
0评论
0点赞
发布博客于 7 月前

常见的机器学习算法

诞生于1956年的人工智能,由于受到智能算法、计算速度、存储水平等因素的影响,在六十多年的发展过程中经历了多次高潮和低谷。最近几年,得益于数据量的上涨、运算力的提升,特别是机器学习新算法的出现,人工智能迎来了大爆发的时代。提到机器学习这个词时,有些人首先想到的可能是科幻电影里的机器人。事实上,机器学习是一门多领域交叉学科,涉及概率论、统计学、算法复杂度理论等多门学科。专门研究计算机如何模拟或实现人类的学习行为,利用数据或以往的经验,以此优化计算机程序的性能标准。根据学习任务的不同,我们可以.
转载
93阅读
0评论
0点赞
发布博客于 7 月前

BN(批量归一化层Batch Normalization)的作用与原理

1.简明https://www.jianshu.com/p/fcc056c1c2002.详细https://blog.csdn.net/hjimce/article/details/50866313
原创
112阅读
0评论
0点赞
发布博客于 7 月前

去除CSDN编辑器中图片的水印

这种方法相对上面的来说相对简单,因为CSDN上的编辑器和简书上的编辑器一样支持截屏粘贴图片到文章,然后我们只需要点击我们文章上的图片,操作如下1.比如我要去除如下所示的图片水印2.首先我们鼠标单击图片,接下来出现如下所示界面3.操作:把红色框中后 “?和后面的” 那一大部分去掉即可,然后水印就去除了写到这里我们去除CSDN上面的水印就大功告成了...
原创
59阅读
0评论
0点赞
发布博客于 7 月前

神经网络权重的初始化

当你训练神经网络时,权重随机初始化是很重要的。对于逻辑回归,把权重初始化为 0,当然也是可以的。但是对于一个神经网络,如果你把权重或者参数都初始化为 0,那么梯度下降将不会起作用。1.权重初始化的重要性神经网络的训练过程中的参数学习时基于梯度下降算法进行优化的。梯度下降法需要在开始训练时给每个参数赋予一个初始值。这个初始值的选取十分重要。在神经网络的训练中如果将权重全部初始化为0,则第一遍前向传播过程中,所有隐藏层神经元的激活函数值都相同,导致深层神经元可有可无,这一现象称为对称权重现象。.
原创
129阅读
0评论
0点赞
发布博客于 7 月前

CSDN富文本编辑器功能快捷键

CSDN富文本编辑器功能快捷键
原创
64阅读
0评论
0点赞
发布博客于 7 月前

如何解决机器学习中 数据不平衡 的问题

这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。目录一、数据不平衡以二分类为例:二、如何解决1. 采样缺点:上采样下采样2. 数据合成SMOTE:利用小众样本在特征空间的相似性来生成新样本​Borderline-SMOTEADASYN3.加权4. 一分类三、如何选择一、数据不平衡在学术研.
转载
122阅读
0评论
0点赞
发布博客于 7 月前

C++11新特性

什么是C++11C++11是曾经被叫做C++0x,是对目前C++语言的扩展和修正,C++11不仅包含核心语言的新机能,而且扩展了C++的标准程序库(STL),并入了大部分的C++ Technical Report 1(TR1)程序库(数学的特殊函数除外)。C++11包括大量的新特性:包括lambda表达式,类型推导关键字auto、decltype,和模板的大量改进。本文将对C++11的以上新特性进行简单的讲解,以便大家能够快速了解到C++11对C++的易用性方面起到的巨大作用。C++11
原创
62阅读
0评论
0点赞
发布博客于 7 月前

C++ STL 标准模板库 简介

在前面的章节中,我们已经学习了 C++ 模板的概念。C++ STL(标准模板库)是一套功能强大的 C++ 模板类,提供了通用的模板类和函数,这些模板类和函数可以实现多种流行和常用的算法和数据结构,如向量、链表、队列、栈。C++ 标准模板库的核心包括以下三个组件:组件 描述 容器(Containers) 容器是用来管理某一类对象的集合。C++ 提供了各种不同类型的容器,比如 deque、list、vector、map 等。 算法(Algorithms) 算法作用于容器。它们提
转载
49阅读
0评论
0点赞
发布博客于 7 月前

Python enumerate() 函数

描述enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中。Python 2.3. 以上版本可用,2.6 添加 start 参数。语法以下是 enumerate() 方法的语法:enumerate(sequence, [start=0])参数sequence -- 一个序列、迭代器或其他支持迭代对象。 start -- 下标起始位置。返回值返回 enumerate(枚举) 对象
原创
55阅读
0评论
0点赞
发布博客于 7 月前

基于深度学习的图像超分辨率重建技术的研究

1超分辨率重建技术的研究背景与意义图像分辨率是一组用于评估图像中蕴含细节信息丰富程度的性能参数,包括时间分辨率、空间分辨率及色阶分辨率等,体现了成像系统实际所能反映物体细节信息的能力。相较于低分辨率图像,高分辨率图像通常包含更大的像素密度、更丰富的纹理细节及更高的可信赖度。但在实际上中,受采集设备与环境、网络传输介质与带宽、图像退化模型本身等诸多因素的约束,我们通常并不能直接得到具有边缘锐化、无成块模糊的理想高分辨率图像。提升图像分辨率的最直接的做法是对采集系统中的光学硬件进行改进,但这种做法.
转载
676阅读
2评论
0点赞
发布博客于 7 月前

神经网络常见的几种最优化方法(梯度下降法,牛顿法,拟牛顿法,共轭梯度法等)

梯度:有时候也称之为斜度,也就是一个曲面沿着给定方向的倾斜程度。表示某一个函数在该点出的方向导数沿着该方向取得最大值,即函数在该点出沿着该方向(此梯度方向)变化最快,变化率最大。梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值.
原创
404阅读
0评论
0点赞
发布博客于 7 月前

一文看懂各种神经网络优化算法:从梯度下降到Adam方法

在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还是Adam方法?这篇文章介绍了不同优化算法之间的主要区别,以及如何选择最佳的优化方法。什么是优化算法?优化算法的功能,是通过改善训练方式,来最小化(或最大化)损失函数E(x)。模型内部有些参数,是用来计算测试集中目标值Y的真实值和预测值的偏差程度的,基于这些参数,就形成了损失函数E(x)。比如说,权重(W)和偏差(b)就是这样的内部参数,一般用于计算输出值,在训练神经
转载
109阅读
0评论
0点赞
发布博客于 7 月前

编译性语言、解释性语言和脚本语言

  计算机不能直接理解高级语言,只能直接理解机器语言,所以必须要把高级语言翻译成机器语言,计算机才能执行高级语言编写的程序。 翻译的方式有两种,一个是编译,一个是解释。两种方式只是翻译的时间不同。 编译型语言写的程序执行之前,需要一个专门的编译过程,把程序编译成为机器语言的文件,比如exe文件,以后要运行的话就不用重新翻译了,直接使用编译的结果就行了(exe文件),因为翻译只做了一次,运行时不需要翻译,所以编译型语言的程序执行效率高。 解释性语言的程序不需要...
原创
79阅读
0评论
0点赞
发布博客于 7 月前

目标检测之 IoU

IoU 作为目标检测算法性能 mAP 计算的一个非常重要的函数。但纵观 IoU 计算的介绍知识,都是直接给出代码,给出计算方法,没有人彻底地分析过其中的逻辑,故本人书写该篇博客来介绍下其中的逻辑。1. IoU的简介及原理解析IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。开始计算之前,我们首先进行分析下交集和并集到底应该怎么计算:我们首先
转载
65阅读
0评论
0点赞
发布博客于 7 月前

三、训练自己的yolo3模型

yolo3整体的文件夹构架如下:本文使用VOC格式进行训练。训练前将 标签文件(.xml) 放在 VOCdevkit 文件夹下的 VOC2007 文件夹下的 Annotation 中。训练前将图片文件放在 VOCdevkit 文件夹下的 VOC2007 文件夹下的 JPEGImages 中。一个图片文件 对应 一个标签文件:在训练前利用 voc2yolo3.py 文件生成对应的txt。再运行根目录下的voc_annotation.py,运行前需要将classes改成你自己的cla..
原创
103阅读
0评论
0点赞
发布博客于 7 月前