Tensorflow自我训练进阶(代码+注解)【2】第一个神经网络--简单感知器处理MNIST

这些博客梳理自极客学院整理的TensorFlow官方文档中文版,链接在下面。

#########################

本章参考内容:MNIST机器学习入门

详细资料请参考:http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html。

一些机器学习算法的具体实现我会陆续更新在另一个系列博客中: Tensorflow算法补充--机器学习算法Python实现

现在对一些值得注意的地方说一下。

########################

1.我们从MNIST导入的数据都是经过pooling(池化)的,因为都是从二维图片得到一维向量,而图片是由28*28=784个pixel组成的。pooling造成的信息损失我们先不用考虑。

2.过程大概如下: 数据集包含两部分:image, label;对于第i行, image([i, 0], [i, 1]......[i, 783])是[0,1]之间的某个数,代表了该pixel的强度,而相应的label([i,0]......[i,9])是一个one-hot向量,即只有一个元素是1.其余都是0。1的位置对应着该图片所代表的数字。eg.:label(0,0,0,1,0,0,0,0,0,0)代表该行数字为3。什么是一行?一行就是一个测试数据(图片),被分成了image&label两部分保存下来了。

3.我们要构建的仅仅是一个含有输入--输出两层的感知器。所以模型非常固定。唯一可变的东西就是nonlinear-encouragement的函数选择。分类问题我们多用softmax函数进行处理。(感知器数学模型参考开头的资料)

4.里面使用了一个比较重要的算法stochastic gradient descent,对于一个参数每次遍历训练集随机选取一定规模数据进行训练(repeatedly)。相对的算法batch gradient descent, 对一个参数利用所有数据去更新一次就完成了......

5.里面还有一个比较重要的loss函数:交叉熵,有待研究。为什么它的性质那么好呢......

6. 为了理解代码还有最后两个知识点要补充:占位符和feed--fetch机制。

占位符placeholder

我的理解就是很像c里面动态分配了一块“空间”出来,空间指定了其内容的大小和类型,而里面填充什么内容需要经过之后的处理才知道。

Feed--Fetch机制

feed使用一个tensor值临时替换一个操作的输出结果。通俗地说,就是把神经网络的结构与数据分开。对于一个节点,我们可以事先通过placeholder开辟一块空间,然后在session中给它“喂”数据。使用的方法是Python的字典。记得方法结束后feed就会消失。(temporary)

#...
input1 = tf.placeholder(tf.type.float32, [1, 5], name="input1")
#...
with tf.Session() as sess:
    print sess.run(input1, feed_dict={input1:[0., 1., 2., 3., 4.]})
    
这里给input1这个变量喂了一维向量。。。
fetch没有显示表达的函数,就是在session运行时传入一些tensor去取回结果。其实每次执行sess.run(var)都是一次fetch,只不过这些都是只传入了一个tensor。如果取回多个,就要以List形式传入多个tensor: sess.run([tensor1, tensor2,...])

接下来是代码部分,讲解内容已经注释在里面,就是对过程的叙述。由于vm ware没有中文输入法所以均为英文~

import time  
start = time.clock()  
import tensorflow as tf  
from tensorflow.examples.tutorials.mnist import input_data  
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  
  
print '\nexample3: Simple NN in MNIST, by ORCA\n'  
  
#NN parameters  
n_input = 784   #28*28  
n_class = 10    #number 0~~9  
  
#design your model with vars and parameters  
x = tf.placeholder("float", [None, n_input])  
W = tf.Variable(tf.zeros([n_input, n_class]))  #n_input/n_class is not allowed in Variable function......  
b = tf.Variable(tf.zeros([n_class]))  
y = tf.nn.softmax(tf.matmul(x, W)+b) #using softmax as   
#finish  
  
#design how to train your model  
y_ = tf.placeholder("float", [None, n_class]) #y_ stands for real distribution  
cross_entropy = -tf.reduce_sum(y_*tf.log(y))  #cross_entropy as nonlinear encouragement  
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)  
#finish  
  
#now, begin session and start your training  
init_op = tf.initialize_all_variables()  
sess = tf.Session()  
sess.run(init_op)  
for i in range(1000):  
    batch_xs, batch_ys = mnist.train.next_batch(100)  
    sess.run(train_step, feed_dict={x:batch_xs, y_:batch_ys})  
#finish  
  
#how to evaluate our model?  
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))  
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))  
print sess.run(accuracy, feed_dict={x:mnist.test.images, y_:mnist.test.labels})  
sess.close()  
#finish  
  
print '\nFinish your training within', time.clock()-start, 'seconds\n'  

<注:其中两个函数,cross_entropy函数是用来训练模型的loss函数,而accuracy函数是用来评估模型好坏的,具有不同的功能>

下图是我分别训练100次和1000次得到的准确率(即修改循环中的参数i)

第二次用时少大概是使用了第一次抽取数据后的缓存......



天空鱼

Every Machine owns a heart

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值