基于MOOC人工智能之模式识别的课程完成的第二次作业
MATLAB实现感知器算法(MNIST数据集)
MOOC地址:人工智能之模式识别
线性分类器之感知器模型,不能解决两两不可分问题。
感知器是一个通过输入加权和与阈值的比较来觉得是否激活输出的神经元模型,是一个线性分类器,输入的权构成了线性分类决策边界的权向量,激活输出的阈值θ就是分类决策边界的偏置量 w0。所以,经过数据规范化以后,得到了统一的求解目标,即
感知器的求解目标:
感知器算法设定准则函数的依据很简单,就是最终分类器要能正确分类所有的样本,所以,感知器算法的准则函数 J 设定为所有错分样本的判别函数值之和,再乘以-1.因此,只要存在错分样本,准则函数值就是大于 0 的,只有当所有样本都正确地被分类了,准则函数才能取得极小值 0.如何求解呢?感知器算法采用了数值优化中经典的梯度下降法,即从一个任意的初始权向量 w0 出发,沿准则函数值下降最快的方向,也就是负梯度方向对权向量进行一步步修正,直到获得全局最优解为止。即第 k+1 步是在第 k 步