关闭
当前搜索:

人工智障学习笔记——深度学习(4)生成对抗网络

概念 生成对抗网络(GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。判别模型比较好理解,就像分类一样,有一个判别界限,通过这个判别界限去区分样本。从概率角度分析就是获得样本x属于类别y的概率,是一个条件概率P...
阅读(15) 评论(0)

人工智障学习笔记——深度学习(3)递归神经网络

传统的神经网络模型中,输入层到隐含层再到输出层他们的层与层之间是全连接的,但是每层之间的节点是无连接的。这样就会造成一个问题,有些情况,每层之间的节点可能是存在某些影响因素的。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。而递归神经网络就能很好的解决这类问题。...
阅读(202) 评论(0)

人工智障学习笔记——深度学习(2)卷积神经网络

上一章最后提到了多层神经网络(deep neural network,DNN),也叫多层感知机(Multi-Layer perceptron,MLP)。当下流行的DNN主要分为应对具有空间性分布数据的CNN(卷积神经网络)和应对具有时间性分布数据的RNN(递归神经网络,又称循环神经网络)。概念CNN是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。与...
阅读(276) 评论(0)

人工智障学习笔记——深度学习(1)神经网络

一.神经网络 我们所说的深度学习,其最基础最底层的模型称之为"神经网络"(neural network),因为我们希望机器能够像我们人类大脑的神经网络处理事件一样去解决问题,最终达到"人工智能"的效果。 二.神经元 神经网络的基本单位叫做神经元,是我们人类思考的基础。机器模拟的神经元模型是一个包含输入,输出与计算功能的模型。输入可以类比为神经元的树突,而输出可以类比为神经元的轴突,计...
阅读(212) 评论(0)

人工智障学习笔记——机器学习(16)降维小结

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据...
阅读(323) 评论(0)

人工智障学习笔记——机器学习(15)t-SNE降维

一.概念 t-SNE(t分布随机邻域嵌入)是一种用于探索高维数据的非线性降维算法。它将多维数据映射到适合于人类观察的两个或多个维度。 t-SNE主要包括两个步骤:第一、t-SNE构建一个高维对象之间的概率分布,使得相似的对象有更高的概率被选择,而不相似的对象有较低的概率被选择。第二,t-SNE在低维空间里在构建这些点的概率分布,使得这两个概率分布之间尽可能的相似(这里使用KL散度(Kullba...
阅读(298) 评论(0)

人工智障学习笔记——机器学习(14)mds&isomap降维

一.概念 MDS(多维缩放)降维是一组对象之间的距离的可视化表示,也可以当做一种无监督降维算法使用。而Isomap(等度量映射)是在MDS算法的基础上衍生出的一种非迭代的全局优化算法,它是一种等距映射算法,也就是说降维后的点,两两之间距离不变,这个距离是测地距离。 二.算法 MDS算法的思想其实是巧妙的,即通过利用对点(数据)做平移,旋转,翻转等操作,点的距离是不变的这一特性来对...
阅读(347) 评论(0)

人工智障学习笔记——机器学习(13)LLE降维

一.概念 LLE:Locally linear embedding(局部线性嵌入算法)是一种非线性降维算法,它能够使降维后的数据较好地保持原有流形结构。LLE可以说是流形学习方法最经典的工作之一。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征。 二.算法 LLE算法认为每一个数据点都可以由其近邻点的...
阅读(417) 评论(0)

人工智障学习笔记——机器学习(12)LDA降维

一.概念 LDA:Linear Discriminant Analysis (也有叫做Fisher Linear Discriminant)。与PCA一样,是一种线性降维算法。不同于PCA只 会选择数据变化最大的方向,由于LDA是有监督的(分类标签),所以LDA会主要以类别为思考因素,使得投影后的样本尽可能可分。它通过在k维空间选择一个投影超平面,使得不同类别在该超平面上的投影之间的距离尽可能近...
阅读(422) 评论(0)

人工智障学习笔记——机器学习(11)PCA降维

一.概念 Principal Component Analysis(PCA):主成分分析法,是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,即把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合。并期望在所投影的维度上数据的方差最大,尽量使新的m个特征互不相关。从旧特征到新特征的映射捕获数据中的固有变异性。以此使用较少的数据维度,同时保留住较...
阅读(509) 评论(0)

人工智障学习笔记——机器学习(10)AP聚类

一.概念  Affinity Propagation (AP) 聚类是2007年在Science杂志上提出的一种新的基于数据点间的"信息传递"的一种聚类算法。与k-均值算法或k中心点算法不同,AP算法不需要在运行算法之前确定聚类的个数。AP算法寻找的"examplars"即聚类中心点是数据集合中实际存在的点,作为每类的代表。它根据N个数据点之间的相似度进行聚类,这些相似度可以是对称的,即两个数据...
阅读(478) 评论(0)

人工智障学习笔记——机器学习(9)最大期望算法

一.概念 最大期望算法,也就是著名的em算法,他起源于一条dog……...
阅读(519) 评论(0)

人工智障学习笔记——机器学习(8)K均值聚类

一.概念 K均值聚类(K-means)是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。 二.算法 1)从数据中随机选取K组数据作为质心...
阅读(550) 评论(0)

人工智障学习笔记——机器学习(7)FM/FFM

一.概念 FM(分解机模型)和FFM(基于域的分解机模型)是最近几年提出的模型,主要用于预估CTR/CVR,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错的战绩。 二.原理 FM(Factorization Machine)是由Konstanz大学Steffen Rendle(现任职于Google)于20...
阅读(730) 评论(0)

人工智障学习笔记——机器学习(6)协同过滤

一.概念 有句成语可以将协同过滤这个思想表现的淋漓尽致,那就是物以类聚,人以群分  ——出处:《易经·系辞上》: 天尊地卑,乾坤定矣。卑高以陈,贵贱位矣。动静有常,刚柔断矣。方以类聚,物以群分,吉凶生矣。在天成象,在地成形,变化见矣。是故刚柔相摩,八卦相荡,鼓之以雷霆,润之以风雨,日月运行,一寒一暑。乾道成男,坤道成女。乾知大始,坤作成物。乾以易知,坤以简能。易则易知,简则易从。易知则有亲,...
阅读(491) 评论(0)
168条 共12页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:156452次
    • 积分:3288
    • 等级:
    • 排名:第11953名
    • 原创:166篇
    • 转载:2篇
    • 译文:0篇
    • 评论:36条
    博客专栏
    文章分类
    最新评论