人工智障学习笔记——机器学习(8)K均值聚类

一.概念

K均值聚类(K-means)是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。


二.算法
1)从数据中随机选取K组数据作为质心centroids
2)对剩余的数据依次计算其到每个质心的距离,并把它归到最近的质心的类
3)重新计算已经得到的各个类的质心
4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束


三.实现

# -*- coding: utf-8 -*-  
from numpy import *
import time
import matplotlib.pyplot as plt


#随机200个坐标点 (-10~10)
def getdataSet():
    dataSet=mat(zeros((100, 2)))
    numSamples = dataSet.shape[0]  
    offset=[[-10,-10],[-10,10],[10,-10],[10,10]]#分类
    for i in range(numSamples):
        dataSet[i] =random.uniform(-5,5)+offset[i%4][0],random.uniform(-5,5)+offset[i%4][1]#偏移
       
    return dataSet


# 欧式距离
def euclDistance(vector1, vector2):
	return sqrt(sum(power(vector2 - vector1, 2)))

# 总误差
def getcost(clusterAssment):  
    len = clusterAssment.shape[0]  
    Sum = 0.0  
    for i in range(len):  
        Sum = Sum + clusterAssment[i, 1]  
    return Sum 

# 用随机样本初始化centroids  
def initCentroids(dataSet, k):  
    numSamples, dim = dataSet.shape  
    centroids = zeros((k + 1, dim))    
    s = set()  
    for i in range(1, k + 1):  
        while True:  
            index = int(random.uniform(0, numSamples))  
            #随机数去重
            if index not in s:  
                s.add(index)  
                break        
        centroids[i, :] = dataSet[index, :]  
    return centroids

# k-means主算法
def kmeans(dataSet, k):
    numSamples = dataSet.shape[0]

    # 第一列存这个样本点属于哪个簇
    # 第二列存这个样本点和样本中心的误差
    clusterAssment = mat(zeros((numSamples, 2)))
    for i in range(numSamples):
        clusterAssment[i, 0] = -1
    clusterChanged = True

    # step 1: 初始化centroids
    centroids = initCentroids(dataSet, k)

    # 如果收敛完毕,则clusterChanged为False
    while clusterChanged:
        clusterChanged = False
        # 对于每个样本点
        for i in range(numSamples):
            minDist = 0xfffff
            minIndex = 0
            # 对于每个样本中心
            # step 2: 找到最近的样本中心
            for j in range(1, k + 1):
                distance = euclDistance(centroids[j, :], dataSet[i, :])
                if distance < minDist:
                    minDist = distance
                    minIndex = j

            # step 3: 更新样本点与中心点的分配关系
            if clusterAssment[i, 0] != minIndex:
                clusterChanged = True
                clusterAssment[i, :] = minIndex, minDist
            else:
                clusterAssment[i, 1] = minDist

        # step 4: 更新样本中心     
        for j in range(1, k + 1):
            pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
            centroids[j, :] = mean(pointsInCluster, axis=0)
    return centroids, clusterAssment

x=[1, 2, 3, 4, 5, 6, 7, 8]  
y=[0, 0, 0, 0, 0, 0, 0, 0]

dataSet =getdataSet()
print(dataSet)

plt.figure('k-means',figsize=(12, 6)) 
for index in range(8):      
    k = x[index] 
    centroids, clusterAssment = kmeans(dataSet, k)       
    #print(clusterAssment)
    y[index]=getcost(clusterAssment)
    print("x: ",k," y: ",y[index])
    plt.subplot(2, 4, index+1,facecolor=(0.5,0.5,0.5))   
    numSamples, dim = dataSet.shape
    mark = ['or', 'og', 'ob', 'oc', 'om', 'oy', 'ok', 'ow']
    for i in range(numSamples):
        markIndex = int(clusterAssment[i, 0])
        plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex-1])
    mark = ['*r', '*g', '*b', '*c', '*m', '*y', '*k', '*w']
    for i in range(1,k+1):
        plt.plot(centroids[i, 0], centroids[i, 1], mark[i-1], markersize = 12)
    plt.subplots_adjust(wspace=0.4, hspace=0.4) 
    plt.xticks(fontsize=10, color="darkorange")  
    plt.yticks(fontsize=10, color="darkorange") 
    plt.title(index+1) 
plt.figure('K enum',figsize=(6, 3)) 
plt.plot(x, y, "b--", linewidth=2)  
plt.show()
  



这里在getdataSet随机数据点中加入了偏移量影响,可以看出数据分布大概在四角方向,显然K=4效果应最好。

通过程序输出的不同K值误差(clusterAssment)总和也可以看出,当K>4后分类的增多确实已经不会再对误差产生太大的优化了,反而看起来乱乱的。

故合理的确定K值对于聚类效果的好坏有很大的影响。


四.K-Means ++ 算法

除了要确定K值外,Kmeans需要人为地确定初始聚类中心,不同的初始聚类中心可能导致完全不同的聚类结果。故而衍生了 k-means++算法。

 k-means++算法选择初始聚类中心的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。

1.从输入的数据点集合中随机选择一个点作为第一个聚类中心
2.对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
3.选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
4.重复2和3直到k个聚类中心被选出来
利用这k个初始的聚类中心来运行标准的k-means算法

从上面的算法描述上可以看到,算法的关键是第3步,如何将D(x)反映到点被选择的概率上,一种算法如下:
先从我们的数据库随机挑个随机点当“种子点”
对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
重复2和3直到k个聚类中心被选出来
利用这k个初始的聚类中心来运行标准的k-means算法
可以看到算法的第三步选取新中心的方法,这样就能保证距离D(x)较大的点,会被选出来作为聚类中心了。

代码可以参考http://rosettacode.org/wiki/K-means%2B%2B_clustering


五.总结

 k-means算法比较简单,和之前说过的K近邻算法(KNN)http://blog.csdn.net/sm9sun/article/details/78521927有些类似,本质上都是给定一个点,然后在数据集中找邻近的点。但又有些区别:

首先KNN是分类算法,而K-means是聚类算法,KNN是监督学习,而K-means是非监督学习。也就是说,KNN拿到的数据集是已经是有分类的数据了,而K-means拿到的数据是无分类的,经过聚类后才有了类的标志。且K的定义也完全不一样,K-means的K值是需要提前指定的,通过上述代码也可以看出,K的选取至关重要。但在实际中这个 K 值的选定是非常难以估计的,很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适。且K-means应用局限性非常大,聚类的算法公式还需实际情况而变。


六.相关学习资源

http://blog.csdn.net/loadstar_kun/article/details/39450615

http://blog.csdn.net/eventqueue/article/details/73133617

http://blog.csdn.net/zouxy09/article/details/17589329




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值