一、简易数据集的Kmeans实现
数据下载 提取码:quu3
导入库并载入数据:
import numpy as np
import matplotlib.pyplot as plt
# 载入数据
data = np.genfromtxt("kmeans.txt", delimiter=" ")
定义函数:计算距离、初始化聚类中心和更新聚类中心函数:
# 计算距离
def euclDistance(vector1, vector2):
return np.sqrt(sum((vector2 - vector1)**2))
# 初始化质心
def initCentroids(data, k):
numSamples, dim = data.shape
# k个质心,列数跟样本的列数一样
centroids = np.zeros((k, dim))
# 随机选出k个质心
for i in range(k):
# 随机选取一个样本的索引
index = int(np.random.uniform(0, numSamples))
# 作为初始化的质心
centroids[i, :] = data[index, :]
return centroids
# 传入数据集和k的值
def kmeans(data, k):
# 计算样本个数
numSamples = data.shape[0]
# 样本的属性,第一列保存该样本属于哪个簇,第二列保存该样本跟它所属簇的误差
clusterData = np.array(np.zeros((numSamples, 2)))
# 决定质心是否要改变的变量
clusterChanged = True
# 初始化质心
centroids = initCentroids(data, k)
while clusterChanged:
clusterChanged = False
# 循环每一个样本
for i in range(numSamples):
# 最小距离
min