在之前的博客 人脸识别经典算法一:特征脸方法(Eigenface) 里面介绍了特征脸方法的原理,但是并没有对它用到的理论基础PCA做介绍,现在做补充。请将这两篇博文结合起来阅读。以下内容大部分参考自斯坦福机器学习课程:http://cs229.stanford.edu/materials.html
假设我们有一个关于机动车属性的数据集{x(i);i=1,...,m}(m代表机动车的属性个数),例如最大速度,最大转弯半径等。假设x(i)本质上是n维的空间的一个元素,其中n<<m,但是n对我们来说是未知的。假设xi和xj分别代表车以英里和公里为单位的最大速度。显然这两个属性是冗余的,因为它们两个是有线性关系而且可以相互转化的。因此如果仅以xi和xj来考虑的话,这个数据集是属于m-1维而不是m维空间的,所以n=m-1。推广之,我们该用什么方法降低数据冗余性呢?
首先考虑一个例子,假设有一份对遥控直升机操作员的调查,用x(i)1(1是下标,原谅我这操蛋的排版吧)表示飞行员i的飞行技能,x(i)

本文主要补充介绍了特征脸方法(Eigenface)的理论基础——PCA(主成分分析)。通过一个机动车属性的数据集例子,解释了PCA如何降低数据冗余性和进行数据降维。PCA的关键在于寻找数据在单位向量上的投影以最大化方差,这些单位向量即为主成分。特征脸方法在人脸识别中利用PCA实现高维图像数据的降维表示。
最低0.47元/天 解锁文章
2281

被折叠的 条评论
为什么被折叠?



