YBAdiam的博客

这是我自传最终章,写这首长诗用一生时光

TensorFlow精进之路(十六):使用slim模型库对图片分类

1、概述 TF-slim是tensorflow的一个轻量级库,它将很多常见tensorflow函数进行封装,使的模型的构建、训练、测试都更加简洁,特别适用于构建结构复杂的深度神经网络。github地址为:https://github.com/tensorflow/models/tree/mas...

2019-06-17 19:23:57

阅读数 3

评论数 0

TensorFlow精进之路(十五):深度神经网络简介

1、概述 本来想用卷积神经网络来预测点东西,但是效果嘛......,还是继续学习图像类的应用吧~前面学习的神经网络都是一些基础的结构,这些网络在各自的领域中都有一定效果,但是解决复杂问题肯定不够的,这就需要用到深度神经网络。深度神经网络是将前面所学的网络组合起来,利用各自网络的优势,使整体效果...

2019-06-17 19:13:05

阅读数 10

评论数 0

TensorFlow精进之路(十四):RNN训练MNIST数据集

1、概述 前面介绍了RNN,这一节就用tensorflow的RNN来训练MNIST数据集,看看准确率如何。 2、代码实现 2.1、导入数据集 # encoding:utf-8 import tensorflow as tf from tensorflow.examples.tut...

2019-06-17 19:07:56

阅读数 5

评论数 0

TensorFlow精进之路(十三):长短时记忆神经网络LSTM

1、概述 上一节说到,简单的循环神经网络不能解决长期依赖问题,那么,这节就来看看可以解决这个问题的长短时记忆神经网络LSTM。 2、网络结构 LSTM通过刻意的设计来避免长期依赖问题,先来看看标准的RNN,如下图所示,这里的激活函数使用tanh函数, 而LSTM网络也是使用这样的结...

2019-06-17 19:01:46

阅读数 37

评论数 0

TensorFlow精进之路(十二):随时间反向传播BPTT

1、概述 上一节介绍了TensorFlow精进之路(十一):反向传播BP,这一节就简单介绍一下BPTT。 2、网络结构 RNN正向传播可以用上图表示,这里忽略偏置。 上图中, x(1:T)表示输入序列, y(1:T)表示输出序列, Y(1:T)表示标签序列, 表示隐含层输出, ...

2019-06-17 18:58:34

阅读数 8

评论数 0

TensorFlow精进之路(十一):反向传播BP

1、概述 全连接神经网络和卷积神经网络用的是反向传播(BackPropagation,BP),而卷积神经网络用的是随时间反向传播(BackPropagation Through Time,BPTT),这一节先讲BP。 2、网络结构 假设有如下网络, 第一层为输入层,输入节点为x1,...

2019-06-17 15:09:16

阅读数 4

评论数 0

TensorFlow精进之路(十):循环神经网络RNN

1、概述 本来想继续学习tensorflow图像方面的应用,但是循环神经网络的某一个应用吸引到了我,所以就先学学这个循环神经网络。 2、用处 前面学习的全连接神经网络或者卷积神经网络,网络结构都是从输入层,到隐含层,最后到输出层,层与层之间是全连接或者部分连接,但是,每层之间的节点是没有...

2019-06-17 15:02:57

阅读数 22

评论数 0

TensorFlow精进之路(九):TensorFlow编程基础

1、概述 卷积部分的知识点在博客:TensorFlow精进之路(三):两层卷积神经网络模型将MNIST未识别对的图片筛选出来已经写过,所以不再赘述。这一节简单聊聊tensorflow的编程基础。 2、会话Session Tensorflow有“图”和“会话”的概念,“图”定义一个计算任务...

2019-06-17 14:52:54

阅读数 2

评论数 0

TensorFlow精进之路(八):神经元

1、概述 喝完奶茶继续干,通过前面的学习,对深度学习似乎有那么点感觉了,本来想继续往下学学一些应用的例子的,但是现在我想还是系统的先把一些深度学习的基本概念总结一下,以及先系统的学习一下tensorflow的编程基础,工欲善其事,必先利其器。这一节就先说说神经元吧。 2、单个神经元 ...

2019-06-17 14:41:32

阅读数 8

评论数 0

TensorFlow精进之路(七):关于两层卷积神经网络对CIFAR-10图像的识别

1、概述 在前面已经对官方的CIFAR10图像识别模块进行分析,但如果只做到这一步感觉还是不够,没能做到举一反三以及对之前学的知识的巩固,所以这一节,我打算结合之前学的双层卷积神经网络自己写一个demo。 2、代码解析 2.1、下载CIFAR10数据集 # 查看CIFAR-10数据...

2019-06-17 14:36:14

阅读数 2

评论数 0

TensorFlow精进之路(六):CIFAR-10图像是被(下)

8、源码分析 1、入口函数 要训练tensorflow官方的cifar10模型,只要执行pythoncifar10_train.py即可,所以入口函数应该是在cifar10_train.py里。找到 def main(argv=None): # pylint: disable=unused...

2019-06-17 14:30:04

阅读数 2

评论数 0

TensorFlow精进之路(五):CIFAR-10图像识别(中)

5、数据增强 5.1、简介 问题:深度学习中通常会要求数量很大的训练样本,一般来说,样本数量越多,训练效果越好,但是这么庞大的样本的收集整理是很大的工程。 依据:如果对一张图像进行简单的平移、翻转、缩放、颜色变换等操作,并不会改变图像的类别。 结论:数据增强是指对训练的图像数据,利用平移、...

2019-06-17 14:22:56

阅读数 2

评论数 0

TensorFlow精进之路(四):CIFAR-10图像识别(上)

1、CIFAR-10数据集简介 CIFAR-10数据集包含10个类别的RGB彩色图片。图片尺寸为32×32,这十个类别包括:飞机、汽车、鸟、猫、鹿、狗、蛙、马、船、卡车。一共有50000张训练图片和10000张测试图片。 CIFAR-10数据集有如下文件: batches.meta.t...

2019-06-13 23:47:56

阅读数 21

评论数 0

TensorFlow精进之路(三):两层卷积神经网络模型将MNIST未识别对的图片筛选出来

1、概述 自从开了专栏《TensorFlow精进之路》关于对TensorFlow的整理思路更加清晰。上两篇讲到Softmax回归模型和两层卷积神经网络模型训练MNIST,虽然使用神经网络能达到99.31%的正确率,但是我比较好奇是怎样杀马特的字能让它认错字?难道还有比我的字还丑的?所以这次笔记...

2019-06-13 23:24:11

阅读数 22

评论数 0

TensorFlow精进之路(一):Softmax回归模型训练MNIST

1、MNIST数据集简介: MNIST数据集主要由一些手写数字的图片和相应标签组成,图片总共分为10类,分别对应0~9十个数字。 如上图所示,每张图片的大小为28×28像素。而标签则由one-hot向量表示,一个one-hot向量除了某一位数字为1外,其余各唯独都是0。比如[1,0,0,...

2019-06-13 23:14:55

阅读数 20

评论数 0

Qt之QSS:带CheckBox的QGroupBox及其样式设计

前言 在引入QGroupBox的QSS时,会出现下图中的三种问题,导致界面显示极其丑陋。所以要改变QSS设置使界面更bf~ 图a 左边显示问题 图b 标题下沉问题 图c 不对称 下面是两个方式改变QSS让界面更加舒服~ 顺便在原生QGroupBox基础上添加了check...

2019-06-06 17:33:10

阅读数 26

评论数 0

机器学习再回首(十一)——聚类算法

1、概述 这一讲,我们来学习聚类算法。我们之前学习的算法中,数据都是有标签的,属于有监督学习,如果数据没有标签,那怎么办?这就属于无监督学习了,而聚类算法就是用来解决无标签数据的分类问题。这一讲,我们主要学习两个聚类算法:K-MEANS算法和DBSCAN算法。下面分别来讲。 2、K-MEAN...

2019-06-05 23:22:27

阅读数 15

评论数 0

机器学习再回首(十)——支持向量机SVM

1、概述 继续学习,支持向量机在传统的机器学习的地位还是很高的,不过,现在风头已经被神经网络盖过了,但是,还是得学习的。 2、概念 先来看一下,为什么需要支持向量机? 如上图所示,这是一个二分类问题,有三条直线,都能将红点和黄点分开,那么,哪条直线更优? 直观上看,中间的那条直线...

2019-06-05 23:16:38

阅读数 11

评论数 0

机器学习再回首(九)——贝叶斯原理

1、概述 最近公司的事太多,累成狗,晚上都不想学习了,没办法,自己选的路,爬也要爬下去。前几天网购了gtx1080ti,比之前的950快多了,不过如果训练的batch稍大也会内存溢出。这些都是题外话了,继续机器学习,这一讲就学贝叶斯算法。 2、贝叶斯定理 下面通过一个实例来说明贝叶斯算法...

2019-06-05 22:46:20

阅读数 9

评论数 0

机器学习再回首(八)——sklearn

1、概述 这一讲我们来学习机器学习中常用的一个库sklearn,用sklearn中的线性回归、逻辑回归和随机森林来预测泰坦尼克号人员获救情况。 2、安装sklearn 第一步,先安装sklearn库,如果还没安装sklearn库的话,使用下面的命令进行安装, sudo pip ins...

2019-06-05 22:41:02

阅读数 10

评论数 0

提示
确定要删除当前文章?
取消 删除