[机器学习入门] 李宏毅机器学习笔记-3 (Gradient Descent ;梯度下降)

本文介绍了机器学习中梯度下降的三个实用小贴士:如何调整学习率,使用Adagrad自适应学习率算法,以及特征缩放的重要性。讲解了Adagrad如何为不同参数提供个性化的学习率,并讨论了随机梯度下降如何加速训练,以及特征缩放在优化过程中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[机器学习入门] 李宏毅机器学习笔记-3 (Gradient Descent ;梯度下降)

PDF VIEDO

Review

这里写图片描述
这里写图片描述


梯度下降的三个小贴士


Tip 1 Tuning your learning rates

这里写图片描述

  • 最流行也是最简单的做法就是:在每一轮都通过一些因子来减小learning rate。
    • 最开始时,我们距离最低点很远,所以我们用较大的步长。
    • 经过几轮后,我们接近了最低点,所以我们减少learning rate。
    • 比如: 1/t 衰减:
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值