[机器学习入门] 李弘毅机器学习笔记-16 (Unsupervised Learning: Neighbor Embedding;无监督学习:邻域嵌套)

本文介绍了无监督学习中的邻域嵌套方法,包括Manifold Learning、Locally Linear Embedding (LLE)、Laplacian Eigenmaps和T-distributed Stochastic Neighbor Embedding (t-SNE)。LLE通过保持邻域关系进行降维,而t-SNE通过特殊的相似度计算,不仅使相似点接近,也使不同点分离,从而更好地展现数据结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[机器学习入门] 李弘毅机器学习笔记-16 (Unsupervised Learning: Neighbor Embedding;无监督学习:邻域嵌套)

PDF VIDEO

Manifold Learning

我们要做的是非线性的降维,data是分布在低维空间里面,只是被扭曲到了高维空间。
比如地球的表面是一个二维平面,但是被塞到一个三维空间中。
Manifold就是把S型摊平,将高维空间内的低维数据展开,这样才能计算点对点的距离。

这里写图片描述


这样的方法有很多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值