[机器学习入门] 李宏毅机器学习笔记-36(Ensemble part 2;集成方法 part 2)

本文继续探讨李宏毅机器学习笔记中的Ensemble方法,重点讲解AdaBoost算法及其背后的错误率权重调整原理,以及Ensemble策略中的Stacking和Voting机制。通过AdaBoost实例展示如何通过弱分类器构建强分类器,并分析其在训练和测试数据上的误差率变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[机器学习入门] 李宏毅机器学习笔记-35(Ensemble;集成方法)

PDFVIDEO

上接part 1

Ensemble

Ensemble Boosting

AdaBoost

Algorithm for AdaBoost

这里写图片描述

上面
空白处为+1或-1,由下式决定。

这里写图片描述

于是:

这里写图片描述

我们要把这些classifier通通aggregate集合起来,怎么集合呢?

这里写图片描述

对 smaller error ,larger weight 的通俗理解就是,如果这个 f 本来就比较真确,那么最后算集合时投票权自然就大一点。

For example:
T=3, weak classifier = decision stump

这里写图片描述

ε1:error rate
d1:让example weight增加或减少的weight
α1:f1的weight,=ln(d1)
改变training data 的distribution,让 f1 废掉(红圈是分错的,乘以d1,其他除以d1),然后train f2。

这里写图片描述

与上一步同理。

这里写图片描述

最后把三个classifier合起来。

这里写图片描述

合起来后平面被分成六块,每一块都有自己的decision。
接下来要证明一句话:

这里写图片描述

warning of math

这里写图片描述

这里写图片描述

这里写图片描述

AdaBoost 有一个神奇的现象,左图,当classifer越来越多,training data 的error rate 很快变成0,但奇怪的是 test data 的error rate 依然会下降。右图,后来有人分析margin,classifer的增多会把margin往右推。

这里写图片描述

这里写图片描述

For example:

Adaboost + Decision Tree (depth = 5)

这里写图片描述

General Formulation of Boosting

Adaboost是一个特例。

这里写图片描述

这里写图片描述

这里写图片描述


Ensemble: Stacking

Voting

这里写图片描述

这里写图片描述

### 李宏毅异常检测作业代码 对于李宏毅教授的机器学习课程中的异常检测作业,可以在多个开源平台上找到相关资源和实现代码。GitHub 上有许多学生分享了自己的项目成果以及完成这些项目的代码。 在 GitHub 中搜索关键词 "Li Hongyi Anomaly Detection Homework" 可以发现一些仓库包含了该主题的内容[^1]。例如,在 `fengdu78` 的 Scikit-Learn 和 TensorFlow 教程库中可能有关于如何应用这两种框架来解决实际问题的例子;而 FastAI 提供的学习材料也可能涉及到了类似的案例研究[^3]。 具体到异常检测这一部分,通常会涉及到使用统计方法、密度估计或者其他更复杂的模型如孤立森林(Isolation Forests)等来进行数据点是否属于正常范围内的判断。如果想要查看具体的 Python 实现方式,则可以参考那些基于上述提到的教学资料所构建起来的学生作品集。 此外,考虑到李宏毅老师的课程非常受欢迎,并且很多同学都会将自己的作业上传至个人主页或社交平台分享经验心得,因此除了官方渠道外还可以通过社区论坛等方式获取更多关于此课题的信息和支持[^4]。 ```python from sklearn.ensemble import IsolationForest def detect_anomalies(data): model = IsolationForest(contamination=0.1) predictions = model.fit_predict(data) # Mark anomalies as -1 by the algorithm. anomaly_indices = [i for i, pred in enumerate(predictions) if pred == -1] return anomaly_indices ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值