TensorFlow学习日记25

1. IMDB FastText

解析:

'''
This example demonstrates the use of fasttext for text classification
'''

from __future__ import print_function
import numpy as np

from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Embedding
from keras.layers import GlobalAveragePooling1D
from keras.datasets import imdb


def create_ngram_set(input_list, ngram_value=2):
    """
    Extract a set of n-grams from a list of integers.

    >>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=2)
    {(4, 9), (4, 1), (1, 4), (9, 4)}

    >>> create_ngram_set([1, 4, 9, 4, 1, 4], ngram_value=3)
    [(1, 4, 9), (4, 9, 4), (9, 4, 1), (4, 1, 4)]
    """
    return set(zip(*[input_list[i:] for i in range(ngram_value)]))


def add_ngram(sequences, token_indice, ngram_range=2):
    """
    Augment the input list of list (sequences) by appending n-grams values.

    Example: adding bi-gram
    >>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]]
    >>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017}
    >>> add_ngram(sequences, token_indice, ngram_range=2)
    [[1, 3, 4, 5, 1337, 2017], [1, 3, 7, 9, 2, 1337, 42]]

    Example: adding tri-gram
    >>> sequences = [[1, 3, 4, 5], [1, 3, 7, 9, 2]]
    >>> token_indice = {(1, 3): 1337, (9, 2): 42, (4, 5): 2017, (7, 9, 2): 2018}
    >>> add_ngram(sequences, token_indice, ngram_range=3)
    [[1, 3, 4, 5, 1337], [1, 3, 7, 9, 2, 1337, 2018]]
    """
    new_sequences = []
    for input_list in sequences:
        new_list = input_list[:]
        for i in range(len(new_list) - ngram_range + 1):
            for ngram_value in range(2, ngram_range + 1):
                ngram = tuple(new_list[i:i + ngram_value])
                if ngram in token_indice:
                    new_list.append(token_indice[ngram])
        new_sequences.append(new_list)

    return new_sequences


# Set parameters:
# ngram_range = 2 will add bi-grams features
ngram_range = 1
max_features = 20000
maxlen = 400
batch_size = 32
embedding_dims = 50
epochs = 5

print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')
print('Average train sequence length: {}'.format(np.mean(list(map(len, x_train)), dtype=int)))
print('Average test sequence length: {}'.format(np.mean(list(map(len, x_test)), dtype=int)))

if ngram_range > 1:
    print('Adding {}-gram features'.format(ngram_range))
    # Create set of unique n-gram from the training set.
    ngram_set = set()
    for input_list in x_train:
        for i in range(2, ngram_range + 1):
            set_of_ngram = create_ngram_set(input_list, ngram_value=i)
            ngram_set.update(set_of_ngram)

    # Dictionary mapping n-gram token to a unique integer.
    # Integer values are greater than max_features in order
    # to avoid collision with existing features.
    start_index = max_features + 1
    token_indice = {v: k + start_index for k, v in enumerate(ngram_set)}
    indice_token = {token_indice[k]: k for k in token_indice}

    # max_features is the highest integer that could be found in the dataset.
    max_features = np.max(list(indice_token.keys())) + 1

    # Augmenting x_train and x_test with n-grams features
    x_train = add_ngram(x_train, token_indice, ngram_range)
    x_test = add_ngram(x_test, token_indice, ngram_range)
    print('Average train sequence length: {}'.format(np.mean(list(map(len, x_train)), dtype=int)))
    print('Average test sequence length: {}'.format(np.mean(list(map(len, x_test)), dtype=int)))

print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

print('Build model...')
model = Sequential()

# we start off with an efficient embedding layer which maps
# our vocab indices into embedding_dims dimensions
model.add(Embedding(max_features,
                    embedding_dims,
                    input_length=maxlen))

# we add a GlobalAveragePooling1D, which will average the embeddings
# of all words in the document
model.add(GlobalAveragePooling1D())

# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          validation_data=(x_test, y_test))


2. IMDB LSTM

解析:

'''
Trains an LSTM model on the IMDB sentiment classification task.
'''
from __future__ import print_function

from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Embedding
from keras.layers import LSTM
from keras.datasets import imdb

max_features = 20000
maxlen = 80  # cut texts after this number of words (among top max_features most common words)
batch_size = 32

print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')

print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

print('Build model...')
model = Sequential()
model.add(Embedding(max_features, 128))
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))

# try using different optimizers and different optimizer configs
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

print('Train...')
model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=15,
          validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,
                            batch_size=batch_size)
print('Test score:', score)
print('Test accuracy:', acc)


3. LSTM Stateful

解析:

'''Example script showing how to use a stateful LSTM model
and how its stateless counterpart performs.
'''
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM

# ----------------------------------------------------------
# EDITABLE PARAMETERS
# Read the documentation in the script head for more details
# ----------------------------------------------------------

# length of input
input_len = 1000

# The window length of the moving average used to generate
# the output from the input in the input/output pair used
# to train the LSTM
# e.g. if tsteps=2 and input=[1, 2, 3, 4, 5],
#      then output=[1.5, 2.5, 3.5, 4.5]
tsteps = 2

# The input sequence length that the LSTM is trained on for each output point
lahead = 1

# training parameters passed to "model.fit(...)"
batch_size = 1
epochs = 10

# ------------
# MAIN PROGRAM
# ------------

print("*" * 33)
if lahead >= tsteps:
    print("STATELESS LSTM WILL ALSO CONVERGE")
else:
    print("STATELESS LSTM WILL NOT CONVERGE")
print("*" * 33)

np.random.seed(1986)

print('Generating Data...')


def gen_uniform_amp(amp=1, xn=10000):
    """Generates uniform random data between
    -amp and +amp
    and of length xn

    Arguments:
        amp: maximum/minimum range of uniform data
        xn: length of series
    """
    data_input = np.random.uniform(-1 * amp, +1 * amp, xn)
    data_input = pd.DataFrame(data_input)
    return data_input


# Since the output is a moving average of the input,
# the first few points of output will be NaN
# and will be dropped from the generated data
# before training the LSTM.
# Also, when lahead > 1,
# the preprocessing step later of "rolling window view"
# will also cause some points to be lost.
# For aesthetic reasons,
# in order to maintain generated data length = input_len after pre-processing,
# add a few points to account for the values that will be lost.
to_drop = max(tsteps - 1, lahead - 1)
data_input = gen_uniform_amp(amp=0.1, xn=input_len + to_drop)

# set the target to be a N-point average of the input
expected_output = data_input.rolling(window=tsteps, center=False).mean()

# when lahead > 1, need to convert the input to "rolling window view"
# https://docs.scipy.org/doc/numpy/reference/generated/numpy.repeat.html
if lahead > 1:
    data_input = np.repeat(data_input.values, repeats=lahead, axis=1)
    data_input = pd.DataFrame(data_input)
    for i, c in enumerate(data_input.columns):
        data_input[c] = data_input[c].shift(i)

# drop the nan
expected_output = expected_output[to_drop:]
data_input = data_input[to_drop:]

print('Input shape:', data_input.shape)
print('Output shape:', expected_output.shape)
print('Input head: ')
print(data_input.head())
print('Output head: ')
print(expected_output.head())
print('Input tail: ')
print(data_input.tail())
print('Output tail: ')
print(expected_output.tail())

print('Plotting input and expected output')
plt.plot(data_input[0][:10], '.')
plt.plot(expected_output[0][:10], '-')
plt.legend(['Input', 'Expected output'])
plt.title('Input')
plt.show()


def create_model(stateful):
    model = Sequential()
    model.add(LSTM(20,
                   input_shape=(lahead, 1),
                   batch_size=batch_size,
                   stateful=stateful))
    model.add(Dense(1))
    model.compile(loss='mse', optimizer='adam')
    return model


print('Creating Stateful Model...')
model_stateful = create_model(stateful=True)


# split train/test data
def split_data(x, y, ratio=0.8):
    to_train = int(input_len * ratio)
    # tweak to match with batch_size
    to_train -= to_train % batch_size

    x_train = x[:to_train]
    y_train = y[:to_train]
    x_test = x[to_train:]
    y_test = y[to_train:]

    # tweak to match with batch_size
    to_drop = x.shape[0] % batch_size
    if to_drop > 0:
        x_test = x_test[:-1 * to_drop]
        y_test = y_test[:-1 * to_drop]

    # some reshaping
    reshape_3 = lambda x: x.values.reshape((x.shape[0], x.shape[1], 1))
    x_train = reshape_3(x_train)
    x_test = reshape_3(x_test)

    reshape_2 = lambda x: x.values.reshape((x.shape[0], 1))
    y_train = reshape_2(y_train)
    y_test = reshape_2(y_test)

    return (x_train, y_train), (x_test, y_test)


(x_train, y_train), (x_test, y_test) = split_data(data_input, expected_output)
print('x_train.shape: ', x_train.shape)
print('y_train.shape: ', y_train.shape)
print('x_test.shape: ', x_test.shape)
print('y_test.shape: ', y_test.shape)

print('Training')
for i in range(epochs):
    print('Epoch', i + 1, '/', epochs)
    # Note that the last state for sample i in a batch will
    # be used as initial state for sample i in the next batch.
    # Thus we are simultaneously training on batch_size series with
    # lower resolution than the original series contained in data_input.
    # Each of these series are offset by one step and can be
    # extracted with data_input[i::batch_size].
    model_stateful.fit(x_train,
                       y_train,
                       batch_size=batch_size,
                       epochs=1,
                       verbose=1,
                       validation_data=(x_test, y_test),
                       shuffle=False)
    model_stateful.reset_states()

print('Predicting')
predicted_stateful = model_stateful.predict(x_test, batch_size=batch_size)

print('Creating Stateless Model...')
model_stateless = create_model(stateful=False)

print('Training')
model_stateless.fit(x_train,
                    y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_data=(x_test, y_test),
                    shuffle=False)

print('Predicting')
predicted_stateless = model_stateless.predict(x_test, batch_size=batch_size)

# ----------------------------

print('Plotting Results')
plt.subplot(3, 1, 1)
plt.plot(y_test)
plt.title('Expected')
plt.subplot(3, 1, 2)
# drop the first "tsteps-1" because it is not possible to predict them
# since the "previous" timesteps to use do not exist
plt.plot((y_test - predicted_stateful).flatten()[tsteps - 1:])
plt.title('Stateful: Expected - Predicted')
plt.subplot(3, 1, 3)
plt.plot((y_test - predicted_stateless).flatten())
plt.title('Stateless: Expected - Predicted')
plt.show()


4. Pretrained Word Embeddings

解析:

'''
This script loads pre-trained word embeddings (GloVe embeddings)
into a frozen Keras Embedding layer, and uses it to
train a text classification model on the 20 Newsgroup dataset
(classification of newsgroup messages into 20 different categories).
'''

from __future__ import print_function

import os
import sys
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils import to_categorical
from keras.layers import Dense, Input, GlobalMaxPooling1D
from keras.layers import Conv1D, MaxPooling1D, Embedding
from keras.models import Model

BASE_DIR = ''
GLOVE_DIR = os.path.join(BASE_DIR, 'glove.6B')
TEXT_DATA_DIR = os.path.join(BASE_DIR, '20_newsgroup')
MAX_SEQUENCE_LENGTH = 1000
MAX_NB_WORDS = 20000
EMBEDDING_DIM = 100
VALIDATION_SPLIT = 0.2

# first, build index mapping words in the embeddings set
# to their embedding vector

print('Indexing word vectors.')

embeddings_index = {}
f = open(os.path.join(GLOVE_DIR, 'glove.6B.100d.txt'))
for line in f:
    values = line.split()
    word = values[0]
    coefs = np.asarray(values[1:], dtype='float32')
    embeddings_index[word] = coefs
f.close()

print('Found %s word vectors.' % len(embeddings_index))

# second, prepare text samples and their labels
print('Processing text dataset')

texts = []  # list of text samples
labels_index = {}  # dictionary mapping label name to numeric id
labels = []  # list of label ids
for name in sorted(os.listdir(TEXT_DATA_DIR)):
    path = os.path.join(TEXT_DATA_DIR, name)
    if os.path.isdir(path):
        label_id = len(labels_index)
        labels_index[name] = label_id
        for fname in sorted(os.listdir(path)):
            if fname.isdigit():
                fpath = os.path.join(path, fname)
                if sys.version_info < (3,):
                    f = open(fpath)
                else:
                    f = open(fpath, encoding='latin-1')
                t = f.read()
                i = t.find('\n\n')  # skip header
                if 0 < i:
                    t = t[i:]
                texts.append(t)
                f.close()
                labels.append(label_id)

print('Found %s texts.' % len(texts))

# finally, vectorize the text samples into a 2D integer tensor
tokenizer = Tokenizer(num_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(texts)
sequences = tokenizer.texts_to_sequences(texts)

word_index = tokenizer.word_index
print('Found %s unique tokens.' % len(word_index))

data = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

labels = to_categorical(np.asarray(labels))
print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)

# split the data into a training set and a validation set
indices = np.arange(data.shape[0])
np.random.shuffle(indices)
data = data[indices]
labels = labels[indices]
num_validation_samples = int(VALIDATION_SPLIT * data.shape[0])

x_train = data[:-num_validation_samples]
y_train = labels[:-num_validation_samples]
x_val = data[-num_validation_samples:]
y_val = labels[-num_validation_samples:]

print('Preparing embedding matrix.')

# prepare embedding matrix
num_words = min(MAX_NB_WORDS, len(word_index))
embedding_matrix = np.zeros((num_words, EMBEDDING_DIM))
for word, i in word_index.items():
    if i >= MAX_NB_WORDS:
        continue
    embedding_vector = embeddings_index.get(word)
    if embedding_vector is not None:
        # words not found in embedding index will be all-zeros.
        embedding_matrix[i] = embedding_vector

# load pre-trained word embeddings into an Embedding layer
# note that we set trainable = False so as to keep the embeddings fixed
embedding_layer = Embedding(num_words,
                            EMBEDDING_DIM,
                            weights=[embedding_matrix],
                            input_length=MAX_SEQUENCE_LENGTH,
                            trainable=False)

print('Training model.')

# train a 1D convnet with global maxpooling
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
embedded_sequences = embedding_layer(sequence_input)
x = Conv1D(128, 5, activation='relu')(embedded_sequences)
x = MaxPooling1D(5)(x)
x = Conv1D(128, 5, activation='relu')(x)
x = MaxPooling1D(5)(x)
x = Conv1D(128, 5, activation='relu')(x)
x = GlobalMaxPooling1D()(x)
x = Dense(128, activation='relu')(x)
preds = Dense(len(labels_index), activation='softmax')(x)

model = Model(sequence_input, preds)
model.compile(loss='categorical_crossentropy',
              optimizer='rmsprop',
              metrics=['acc'])

model.fit(x_train, y_train,
          batch_size=128,
          epochs=10,
          validation_data=(x_val, y_val))


5. Reuters MLP

解析:

'''
Trains and evaluate a simple MLP
on the Reuters newswire topic classification task.
'''
from __future__ import print_function

import numpy as np
import keras
from keras.datasets import reuters
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.preprocessing.text import Tokenizer

max_words = 1000
batch_size = 32
epochs = 5

print('Loading data...')
(x_train, y_train), (x_test, y_test) = reuters.load_data(num_words=max_words,
                                                         test_split=0.2)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')

num_classes = np.max(y_train) + 1
print(num_classes, 'classes')

print('Vectorizing sequence data...')
tokenizer = Tokenizer(num_words=max_words)
x_train = tokenizer.sequences_to_matrix(x_train, mode='binary')
x_test = tokenizer.sequences_to_matrix(x_test, mode='binary')
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

print('Convert class vector to binary class matrix '
      '(for use with categorical_crossentropy)')
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
print('y_train shape:', y_train.shape)
print('y_test shape:', y_test.shape)

print('Building model...')
model = Sequential()
model.add(Dense(512, input_shape=(max_words,)))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

history = model.fit(x_train, y_train,
                    batch_size=batch_size,
                    epochs=epochs,
                    verbose=1,
                    validation_split=0.1)
score = model.evaluate(x_test, y_test,
                       batch_size=batch_size, verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1])


参考文献:

[1] Keras Examples:https://github.com/fchollet/keras/tree/master/examples

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP工程化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值