Win10环境下安装pytorch

注意:Pytorch0.4.0才开始支持Windows pip install pytorch torchvision 这个是安装命令,不用多说 下面看看遇到的问题: pip指令不对 pip版本过低 反正就是不行,但是我换Linux一次就搞定,不得不说对win兼容性真差劲。 方法2...

2019-05-26 20:42:25

阅读数 3

评论数 0

基于深度学习的Image Inpainting (图像修复)

传统的图形学和视觉的研究方法,主要还是基于数学和物理的方法。然而随着近几年深度学习在视觉领域取得的卓越的效果,视觉领域研究的前沿已经基本被深度学习占领。在这样的形势之下,越来越多的图形学研究者也开始将目光投向深度学习。在图形学和视觉交叉的领域,一系列问题的研究正在围绕深度学习火热展开,特别是在图像...

2019-05-26 16:04:29

阅读数 5

评论数 0

ImportError: No module named Keras

有个TensorFlow项目,调用Keras的https://keras.io/zh/layers/advanced-activations/ LeakyReLU keras.layers.LeakyReLU(alpha=0.3) 带泄漏的 ReLU。 当神经元未激活时,它仍允许赋予一...

2019-05-20 15:35:55

阅读数 40

评论数 0

word2vector(二)

在上一篇文章中,我们简述了skip gram版word2vector的基本原理,留下一个问题待解决,那就是网络非常大,这将导致如下几个困难:1、在上面训练梯度下降会比较慢;2、需要数量巨大的数据来喂到网络中;3、非常容易过拟合。这一节就是专门介绍实际训练中的技巧的。原文在这里:http://mcc...

2019-05-20 10:50:26

阅读数 90

评论数 0

word2vector(一)

word2vector已经成为NLP领域的基石算法。作为一名AI 从业者,如果不能主动去熟悉该算法,应该感到脸红。本文是一篇翻译的文章,原文链接是:http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ 如果...

2019-05-20 10:49:10

阅读数 36

评论数 0

自然语言处理中句子相似度计算的几种方法

基本方法 编辑距离计算 杰卡德系数计算 TF 计算 TFIDF 系数 Word2Vec 计算 在做自然语言处理的过程中,我们经常会遇到需要找出相似语句的场景,或者找出句子的近似表达,这时候我们就需要把类似的句子归到一起,这里面就涉及到句子相似度计算的问题,那么本节就来了解一下怎么样来用 ...

2019-05-19 21:22:53

阅读数 42

评论数 0

卷积神经网络中十大拍案叫绝的操作

CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量。我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中探讨日后的CNN变革方向。 注:水平所限,下面的见解或许有偏差,望大牛指正。另外只介绍其中具有代...

2019-05-19 11:01:30

阅读数 44

评论数 0

CNN 中, 1X1卷积核到底有什么作用呢?

http://www.caffecn.cn/?/question/136 摘抄于这里 从NIN 到Googlenet mrsa net 都是用了这个,为什么呢 发现很多网络使用了1X1卷积核,这能起到什么作用呢?另外我一直觉得,1X1卷积核就是对输入的一个比例缩放,因为1X1卷积核只有一个参数,这...

2019-05-18 17:02:49

阅读数 51

评论数 0

shuffleNet v1 v2学习

ShuffleNet v1 ShuffleNet v1是由旷视科技在2017年底提出的轻量级可用于移动设备的卷积神经网络。 该网络创新之处在于,使用pointwise group convolution还有channel shuffle,保证网络准确率的同时,大幅度降低了所需的计算资源。 在近...

2019-05-18 16:26:21

阅读数 53

评论数 0

ShuffleNet,卷积神经网络

ShuffleNet 是 Face++团队提出的,与 MobileNet 一样,发表于 CVPR-2017,但晚于 MobileNet 两个月才在 arXiv 上公开。论文标题: 《ShuffleNet: An Extremely Efficient Convolutional Neural N...

2019-05-18 16:15:24

阅读数 69

评论数 0

gradient clipping

问题起与这篇知乎:训练到一定epoch之后,突然loss为Nan,其中一种方法说 梯度截断。我觉得我LSTM可能会出现这个问题。 https://www.zhihu.com/question/49346370 梯度消失(vanishing gradient)与梯度爆炸(exploding gr...

2019-05-17 15:20:28

阅读数 63

评论数 0

深度学习训练中cost突然出现NaN

问题:在深度学习训练中,之前的cost是正常的,突然在某一个batch训练中出现Nan few advises to avoid this problem if error starts increasing then NaN appears afterwards: diverging due...

2019-05-17 15:07:39

阅读数 52

评论数 0

深度神经网络训练的技巧

本文主要介绍8种实现细节的技巧或tricks:数据增广、图像预处理、网络初始化、训练过程中的技巧、激活函数的选择、不同正则化方法、来自于数据的洞察、集成多个深度网络的方法。 1 数据增广 在不改变图像类别的情况下,增加数据量,能提高模型的泛化能力。 图像识别领域数据增广的例...

2019-05-16 10:03:52

阅读数 35

评论数 0

python调用super().__init__():TypeError:must be type,not classobj

python3 写法: 如果你在Dict类中未定义__init__方法,默认是使用dict的__init__方法 如果你在Dict类中定义了__init__方法,则可以使用super(Dict, self).__init__(**kw)来调用父类的__init__方法 放在python2就...

2019-05-15 15:06:49

阅读数 26

评论数 0

python ImportError: No module named xx

网上看了很多方法:也试了很多都不行。 1. import sys sys.path.append('xx/xx/code.py') 但是我的项目里面不管用。 2.有用了 在每个文件夹里面新建一个 __init__.py的空文件。 __init__.py文件定义了包的属性和方法。其实它...

2019-05-15 14:35:56

阅读数 23

评论数 0

Python入门之类(class)

Python3 面向对象 Python从设计之初就已经是一门面向对象的语言,正因为如此,在Python中创建一个类和对象是很容易的。本章节我们将详细介绍Python的面向对象编程。 如果你以前没有接触过面向对象的编程语言,那你可能需要先了解一些面向对象语言的一些基本特征,在头脑里头形成一个基本...

2019-05-09 21:42:34

阅读数 20

评论数 0

CUDA——"从入门到放弃"

1. 知识准备 1.1 中央处理器(CPU) 中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。 中央处理器主要包括...

2019-05-09 09:50:13

阅读数 81

评论数 0

linux文件和目录的777、755、644权限解释

r:4读 w:2 写 x: 1执行 权限777: 最高权限777:(4+2+1)(4+2+1)(4+2+1) 第一个7:表示当前文件的拥有者的权限 7 = 4+2+1 可读可写可执行权限 第二个7:表示当前文件的所属组(同组用户)权限7 = 4+2+1 可读可写可执行权限 第三个7:表...

2019-05-08 18:37:50

阅读数 33

评论数 0

loss训练时候震荡分析

分析原因: 1.batch的选择,首先决定的是下降方向,如果数据集比较小,则完全可以采用全数据集的形式。这样做的好处有两点, 1)全数据集的方向能够更好的代表样本总体,确定其极值所在。 2)由于不同权重的梯度值差别巨大,因此选取一个全局的学习率很困难。 2.增大batchsize的好处有三...

2019-05-03 18:57:06

阅读数 108

评论数 0

神经网络不work该怎么办!看看这11条

每个人在调试神经网络的时候,大概都遇到过这样一个时刻: 什么鬼!我的神经网络就是不work!到底该怎么办! 机器学习博客TheOrangeDuck的作者,育碧蒙特利尔实验室的机器学习研究员Daniel Holden根据自己工作中失败的教训,整理了一份神经网络出错原因清单,一共11条。量子位...

2019-05-03 17:50:51

阅读数 905

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭