AlphaGo功成身退了,围棋还将继续

原创 2017年06月01日 17:41:02

柯洁与AlphaGo的巅峰绝响落幕了,这无疑为近几年来很火的人工智能又添了一把柴。媒体上有很多文章分析AlphaGo所用的技术,但这次比赛对围棋的影响同样是十分深远的。
19岁的当今世界围棋第一人柯洁与重装上阵的AlphaGo之间的三番棋决战,再次将间歇性棋迷的我拉到电脑屏幕前,每一盘跟着对局双方不吃午饭地熬了几个小时。看到第三局开始不久柯洁脸上无奈和痛苦的表情、赛后新闻发布会上哽咽的发言,回想起一年前AlphaGo与李世石交战之际他笑谈前辈、指点纹枰的风采(气焰),我颇为动容。
迄今已四夺国际围棋大赛冠军和数次国内比赛冠军,自2015年起就位居国际棋手排名系统Go Ratings第一位,柯洁用傲人和稳定的成绩证明了他是职业棋手这个天才群体中的天才。以围棋为职业,天分仅仅是入场券,要想出类拔萃勤奋是必不可少的。当代棋手熟悉围棋的理论、定式、手筋,学习历史上遗留下来的大量棋谱,研究当下比赛实战谱和趋势,参加频繁的比赛和高密度的网上对弈,将过去棋手经历几十年攀上棋艺顶峰的道路压缩到十余年内完成,十六七岁就拿世界冠军已不是新闻。少时学棋的柯洁早早就立下了不仅要得冠军,还要成为世界围棋第一人的理想,天赋过人的他刻苦异常,“有时候累得啃个苹果,啃着啃着就睡着了”,在一次接受央视董卿采访时柯洁说。他的奋斗故事就像日本热血体育动漫的现实版,在频频击败昔日偶像李世石后,柯洁带着年轻人的志得意满说,“传奇是时候落幕了”。
然而就在柯洁以为可以快乐地做棋坛第一人的时候,AlphaGo横空出世。在它之前几十年人工智能在围棋领域里的有限进展一直让人类棋手有信心和理由轻视机器对手。上个世纪优秀的棋手能够让电脑25个子以上——想象一下百米赛跑一方让另一方99米。进入本世纪后,蒙特卡洛搜索和机器学习大幅提升了电脑的弈棋水平,2009年首次有程序能达到业余低段位。2012年和2013年,Zen和Crazy Stone分别在被让四子的情况下战胜了早已过巅峰的武宫正树和石田芳夫。2015年风云突变,AlphaGo首先在分先的情况下五局五胜职业二段棋手樊麾,彼时它在高段棋手眼里仍然下得保守,没有任何威胁。短短几个月后,AlphaGo就让事先称将5:0取胜的李世石尝到了1:4的败绩。对计算机的进步速度早已习惯的普通人都会断言这是人类赢AlphaGo的最后一局棋。职业棋手虽然也感到震惊,但局内人的身份和惯性令他们认为失败主要是由于李世石的轻敌和不熟悉人工智能的棋路,认真研究电脑的下法,琢磨程序的弱点,人类棋手还是能挽回颜面。很快,这些努力就显得是徒劳了。Master在网络快棋上对当今几乎所有一流高手取得60:0的战绩,随后DeepMind承认那是AlphaGo升级版,并披露它的实力已超越上一版三个子。这些都不容置疑地表明人类在电脑面前已无胜机,对于以围棋为事业的职业棋手们,感情上接受这一点是远比理性上承认它困难和痛苦。柯洁说AlphaGo不仅改变了他对围棋的认识,还改变了他对人生的看法,这应该是不少棋手的心声。经历十多年的学习和磨练后,棋手们基本达到自己的最高水准,往后再提高一小点都像田径比赛打破世界纪录一样困难,人类已达到了自己的极限。可是AlphaGo的棋力却从2014年诞生起持续飞速提升,远远地将人类甩在背后。现实太残酷,变化又来得太快。AlphaGo还需要最后的加冕礼——在正式比赛中赢得当今围棋第一人的柯洁。面对这答案近乎已经揭晓的挑战,人类的代表没有逃避的可能。
“我相信未来是属于人工智能的。可它始终都是冷冰冰的机器,与人类相比,我感觉不到它对围棋的热情和热爱。对它而言…它的热情——也只不过是运转速度过快导致CPU发热罢了。我会我用所有的热情去与它做最后的对决,不管面对再强大的对手——我也绝不会后退!至少这…最后一次…”
在决战前夕,柯洁于题为《最后的对决》的博文中写下了上面这段话。在万众棋迷的注视和见证奇迹的希望下,带着“必胜的信念和必死的决心”,柯洁使尽了浑身解数,下出了精彩棋局,结果还是许多人预料中的0:3。三局结束后的新闻发布会很简短,“我昨天晚上没睡好,想着怎样才能赢AlphaGo……我希望能做得更好,可惜没有做到……很多人今天都能下得比我好,所以我不觉得应该得到什么赞扬……我的情绪浮动,下得很糟糕。我希望能下得更好,很遗憾,以后也没有机会了……我今天输给AlphaGo,不觉得是什么双赢,可能和很多人的想法不一样……我会继续努力……”柯洁的情绪明显很低落,又要不断控制自己,强颜微笑。输棋的痛苦和失落、对自己比赛过程中情绪的起伏和表现的不满,让他流下了眼泪。
有些人或许会觉得,围棋不过是一种智力游戏,被人工智能超越又有多大关系。最容易想到的比喻就是,人跑不过自己发明的汽车,力气也没有举重机大。然而人不会因为这些机器的表现超过自己感到忧虑和惊讶,因为我们的祖先见识过大象,也早就知道自己跑不过马。人类对自己在身体的能力上不是冠军早就习以为常。人类作为万物之灵,骄傲的是自己拥有的心智。围棋所需的心智恰恰是长久以来被认为只有人类才具备。1997年深蓝击败了卡斯帕罗夫,给了人类类似的冲击,但是围棋在每步棋的可能下法数量和一局棋的着数都远超国际象棋,这使得前者所有可能的棋局数量达到10的761次方,而后者只有10的120次方,两者差距的10的600多次方是个惊人的数字。因为计算量的庞大,人类在下围棋时要更多地借助于直觉——对棋形和大局的感觉。虽然在计算广度和深度上有巨大的优势,现有的计算机仍然要想办法获得某种类似人的棋感,才能避免永无止境的计算。围棋的局面恰恰是极难评估的,一个棋子位置上的细微差别就可能造成整盘棋的天壤之别。直到AlphaGo问世前,计算机围棋界还还相信根据任意棋局准确判断孰优孰劣是不可能的。而依据谷歌发布的资料,AlphaGo通过机器学习获得的“直觉”如此精准,以至于不做后续计算,仅仅根据对个落子点的价值评估,就能战胜人类的一流棋手。
与在古代中国被列为琴棋书画之一、作为文人雅士陶冶情操的游戏不同,现在的职业围棋是残酷的胜负世界。年轻人因为计算力和精力的优势成为棋坛的主角,30岁的棋手就已是老将。与武侠小说里年纪越大功力越深的大师相比,棋手更像是体育场上吃青春饭的运动员。两个人面对面,几个小时里精心计算,就为在361个交叉点的棋盘上争得哪怕是半目的胜利,棋局终了,所有的心血都变成简单的一胜一负。一代棋手的目标是战胜李昌镐,新一代棋手的目标是超越李世石,围棋的最高技艺就在这似乎永恒的新老交替中传承和延续。突然,冠军奖杯被永远封存。在黄博士面前,任何棋手都不再有认为自己的棋着绝对好的自信。
对胜负的执着的另一面是对棋道的追求。围棋传入日本后,在重视传统、礼仪、等级和名誉,讲究静心追求极致的文化里,演化出了影响深远的棋道,形成了本因坊、井上、安井、林四大家。彼时的正式对弈数量很有限,双方也都极为重视,特别是一年一度的御城棋,关系到一大家棋手的名誉和利益,说是呕心沥血毫不夸张。进入现代,围棋组织和比赛的制度都有很大改变,但日本棋手很多仍旧继承了对棋道的追求,藤泽秀行“强烈的努力”题字和“棋道一百,我只知七”话语便是其代表。客观地说,这些追求的背后有一个隐含的前提,那就是围棋的奥秘难以穷尽,但是人可以努力进步,思考、练习、交流、对弈就是前进的途径。但是人工智能对棋手的碾压,表明这个更高的水平——棋道是可望而不可即的,更重要的是它是传统的方法无法达至的。所谓机器战胜了人,只不过是说计算机科学家和软件工程师用另一种人类无法实践只有计算机能进行的途径才能下出更能制胜的棋,然而讽刺的又是下棋的计算机对此毫无意识,毫无兴趣,毫不欣赏。这是对棋道的祛魅,也不可避免地对传统围棋文化造成冲击。
知道人下不过机器后,各大围棋比赛的赞助会不会减少?棋迷的热情会不会消减?以后学棋的模式会有怎样的改变?在机器频频战胜人类的日子里,与棋手个人的挫败感并存的还有笼罩在整个围棋界之上的迷茫。
所幸的是,阴云似乎已经开始散去。职业棋手的心理调适完成了。棋手们转而把AlphaGo视为老师,传统的思路被打破,棋盘上呈现出更多的可能。粉丝们的热情也不见受影响。自嘲为“过气网红和当红棋手”的柯洁,微博拥有350多万粉丝。过去他在上面晒日常,秀互动,开玩笑,除了颜值稍逊,完全不输于娱乐明星。一只阳光、快乐、对围棋热爱且有责任感的天才单身狗成为围棋在中国最好的推广大使。AlphaGo的异军突起一度让柯洁有些兴意阑珊,很少发微博。人机大战后喝了九个小时的酒,睡了两个小时,隔日战胜LG杯32强对手元晟溱后,棋士柯杰满血复活。
“现在才发觉…原来和人类下棋,是可以这么的轻松、自在、快乐…下围棋真好”
这条微博获得史无前例的20万点赞,1万5千多条评论。
甚至娱乐圈的反应更积极。由于众所周知的原因,中央电视台不直播人机大战,bilibili网站的讲解直播成为国内观看人数最多的平台,平均10万的在线数比YouTube网站的官方现场直播高出一个数量级。B站基友们送着辣条,撩着主播小姐姐,笑着卡通头套技术员,发送着“现在比分几比几”,“狗狗感觉到一股神秘的东方力量”,“阿尔法狗决定让单身狗一手”,“柯洁中午不吃饭,阿尔法狗应该用电池才公平”的弹幕。
围棋,这项古老的智力游戏,注定将延续它的魅力。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

AlphaGo围棋论文中文翻译

Mastering the game of Go with deep neural networks and tree search (使用深度神经网络与树搜索使计算机精通围棋) Da...

AlphaGo论文的译文,用深度神经网络和树搜索征服围棋:Mastering the game of Go with deep neural networks and tree search

围棋的英文是 the game of Go,标题翻译为:《用深度神经网络和树搜索征服围棋》

AlphaGo技术剖析:揭开围棋大脑的神秘面纱

● 每周一言智能所体现的思维与认知,没有标准。导语围棋,起源于我国尧舜时期,自古以来备受追捧,蕴含着中华文化的丰富内涵。有别于象棋和国际象棋,围棋棋盘之大,玩法千变万化,其落子的可能性更是不可估量,因...

2016alphaGo围棋论文

  • 2016-03-11 10:48
  • 2.56MB
  • 下载

为何谷歌围棋AI AlphaGo可能会把李世石击溃

谷歌DeepMind开发的人工智能围棋程序AlphaGo以5:0的压倒性优势击败了欧洲围棋冠军、专业二段棋手Fan Hui,这是最近一周来最火爆的新闻了。16年3月份AlphaGo会和最近10年平均成...

AlphaGo围棋论文中文翻译

Mastering the game of Go with deep neural networks and tree search (使用深度神经网络与树搜索使计算机精通围棋)

围棋人机大战:为什么AlphaGo不首先挑战中国棋手?(无责任猜测,不幸猜中不胜荣幸)

最近李世石出名了,阿尔法狗出名了,谷歌上头条了!李世石虽然连输三盘,但第四盘扳回一局,第五局明天开战。期间国内各大棋手纷纷表示“不服”,要求挑战谷歌的这只狗狗,那么问题来了:谷歌为什么 要选择挑战韩国...

AlphaGo挑战围棋九段高手李世石

很常一段时间以来,围棋作为计算机博弈领域的最后一个未被机器攻克的棋类。因其复杂度之高,博弈树搜索即广且深。如今,谷歌的AlphaGo载誉而来,去年底以5:0的大比分战胜欧洲围棋冠军,虽然是个职业二段选...

Google DeepMind围棋程序AlphaGo的分析

著作权归作者所有。 商业转载请联系作者获得授权,非商业转载请注明出处。 作者:田渊栋 链接:http://zhuanlan.zhihu.com/yuandong/20607684 来源:知乎 ...

AlphaGo怎么下围棋的

【原创】AlphaGo怎么下围棋的     最近DeepMind团队(google旗下)的AlphaGo(一个围棋的AI)以4:1战胜顶尖人类职业棋手李世石。她到底是怎么下棋的? AlphaGo在面对...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)