看得“深”、看得“清” —— 深度学习在图像超清化的应用

日复一日的人像临摹练习使得画家能够仅凭几个关键特征画出完整的人脸。同样地,我们希望机器能够通过低清图像有限的图像信息,推断出图像对应的高清细节,这就需要算法能够像画家一样“理解”图像内容。至此,传统的规则算法不堪重负,新兴的深度学习照耀着图像超清化的星空。...
阅读(3320) 评论(3)

基于深度学习的图像语义编辑

深度学习在图像分类、物体检测、图像分割等计算机视觉问题上都取得了很大的进展,被认为可以提取图像高层语义特征。基于此,衍生出了很多有意思的图像应用。...
阅读(9437) 评论(9)

卷积“换脸”

卷积“换脸”图像风格转换[1][2][3]在效果上的成功,使得研究者们开始拓展它的应用范围,换脸就是其中之一。在图像风格转换算法框架下,如果将风格图像换做目标人脸,那么就有可能将图像中的人脸换掉。由于图像风格转换的算法框架下是语义级别的图像内容操作,因而,在图像风格转换框架下的换脸可以达到原图的表情、肤色、光照不变。...
阅读(4436) 评论(5)

深度学习之图像修复

图像修复问题就是还原图像中缺失的部分。基于图像中已有信息,去还原图像中的缺失部分。从直观上看,这个问题能否解决是看情况的,还原的关键在于剩余信息的使用,剩余信息中如果存在有缺失部分信息的patch,那么剩下的问题就是从剩余信息中判断缺失部分与哪一部分相似。而这,就是现在比较流行的PatchMatch的基本思想。...
阅读(8333) 评论(9)

卷积新用之语言模型

长期以来,基于LSTM的深度学习算法由于可以对任意长度的上下文进行建模而盘踞在自然语言处理界的山顶。卷积神经网络虽然蠢蠢欲动,却始终不得其法。 而今,这个在CV上嚣张拨扈的东西终于把手伸到了NLP界,而且是在最basic的语言模型问题上。...
阅读(1046) 评论(0)

基于MRF和CNN的图像生成

论文将MRF和CNN结合起来,把[2]的Gram矩阵用MRF Loss进行了替代。即能利用CNN抽象特征的提取能力,又能利用MRF的空间布局限制,提高了生成图像的质量。...
阅读(1827) 评论(0)

感知损失(Perceptual Losses)

图像风格转换算法将图片生成以生成的方式进行处理,如风格转换,是从一张噪音图(相当于白板)中得到一张结果图,具有图片A的内容和图片B的风格。而Perceptual Losses则是将生成问题看做是变换问题。即生成图像是从内容图中变化得到。...
阅读(2865) 评论(0)

深度卷积对抗生成网络(DCGAN)

卷积神经网络在有监督学习中的各项任务上都有很好的表现,但在无监督学习领域,却比较少。本文介绍的算法将有监督学习中的CNN和无监督学习中的GAN结合到了一起。...
阅读(17427) 评论(6)

面朝大海——我的2016

终于,当我坐下回味的时候,我也有了我要怀念的事物,想象中的过去,总是那么的美好。快乐是美好的,激动是美好的,甚至痛苦是美好的,消沉也是美好的。2016,教给我的,就是面朝大海,吞吐一切。别人自有别人的辉煌风光,而我活出了自己的波澜壮阔。...
阅读(4506) 评论(4)

图像风格转换(Image style transfer)

图像风格转换是最近新兴起的一种基于深度学习的技术,它的出现一方面是占了卷积神经网络的天时,卷积神经网络所带来的对图像特征的高层特征的抽取使得风格和内容的分离成为了可能。另一方面则可能是作者的灵感,内容的表示是卷积神经网络所擅长,但风格却不是,如何保持内容而转换风格则是本文所要讲述的。...
阅读(13014) 评论(2)

对抗生成网络(Generative Adversarial Net)

现在,生成模型还没有体会到深度学习的利好,在Discriminative模型上,成果如雨后春笋,但在生成模型上,却并非如此。原因如下: - 在最大似然估计及相关策略上,很多概率计算的模拟非常难 - 将piecewise linear units用在生成模型上比较难 那么,是不是生成模型就借不了深度学习发展的东风了呢?我只能说,有的时候,不得不曲线救国。...
阅读(8618) 评论(3)

我的硬汉观——《丧钟为谁而鸣》读书感悟

谁都不是一座岛屿,自成一体;每个人都是欧洲大陆的一小块,那本土的一部分;如果一块泥巴被海浪冲掉,欧洲就小了一点,如果一座海岬,如果你的朋友或你自己的庄园被冲掉,也是如此;任何人的死亡使我有所缺损,因为我与人类难解难分;所以千万不必去打听丧钟为谁而鸣;丧钟为你而鸣。...
阅读(3081) 评论(3)

tensorflow架构

TensorFlow,以下简称TF,是Google去年发布的机器学习平台,发布以后由于其速度快,扩展性好,推广速度还是蛮快的。江湖上流传着Google的大战略,Android占领了移动端,TF占领神经网络提供AI服务,未来的趋势恰好是语音图像以及AI的时代,而Google IO上发布的Gbot似乎正是这一交叉领域的初步尝试。...
阅读(28326) 评论(8)

ReLU上的花样

ReLU的有效性体现在两个方面: 克服梯度消失的问题 加快训练速度 而这两个方面是相辅相成的,因为克服了梯度消失问题,所以训练才会快。...
阅读(5017) 评论(0)

美国MTV之行

世界很大,有无限的可能性。这句话是真的。——题记一 世界很神奇,存在着另一个国度,说的语言不一样,拥有的文化不一样,社会情境也不一样,生活习惯也不一样,这本身就是足以令人震撼的事情。关键是它目前还是最先进最强大的国家。所以这次出行,我是抱着朝圣之心去的,无论是去公司总部还是去这个国家。——题记二...
阅读(4399) 评论(11)

parameter_server架构

现在的机器学习系统,但凡是大一点的公司,恐怕都在用分布式了。而在分布式机器学习领域,最出名的恐怕就是少帅的PS框架了。 读了一些原始论文,我试着来理解一下。...
阅读(6889) 评论(1)

奇葩的非理性

自从看了《暗时间》之后,一直对心理学念念不忘,我觉得人生要经常进行思考,思考万物,思考自己。而我想看心理学就是想掌握一种自我分析的工具,思考的多了,就知道自己想的是什么,但自己为什么这么想却不得而知。直到今天我看了一本书——《怪诞行为学》,是一本将经济学同心理学结合到一起的书,非常受启发,解释了很多我平时觉得很奇怪的事情....
阅读(1182) 评论(0)

Inception in CNN

之前也写过GoogLeNet的笔记,但那个时候对Inception有些似懂非懂,这周重新看了一遍,觉得有了新的体会,特地重新写一篇博客与它再续前缘。...
阅读(12261) 评论(10)

决策森林和卷积神经网络二道归一

现在有很多人认为神经网络可以和人脑中的机制相似。我却认为,或许人脑中有的机制与此类似,但一定是一个复杂的系统。 但我们其实可以完全不必模仿人脑的构造,因为人工建立的智能一定比人脑在各个方面都要强上百倍,也正如学飞行不能看雄鹰振翅而是空气动力学一样。 因为我的如此认识,所以当我看到有一片论文是将决策森林和卷积神经网络糅合到一起的时候,我感觉到`something is more close.`...
阅读(8814) 评论(3)

二值神经网络(Binary Neural Network,BNN)

在我刚刚过去的研究生毕设中,我在ImageNet数据集上验证了图像特征二值化后仍然具有很强的表达能力,可以在检索中达到较好的效果。而Bengio大神的这篇文章,则不止于将特征二值化,而是要将权重和每层的激活值统统二值化。相比于非二值化的网络,将大量的数学运算变成了位操作。这样就节省了大量的空间而前向传播的时间,使神经网络的应用门槛变得更低。...
阅读(12417) 评论(5)
89条 共5页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:838983次
    • 积分:7427
    • 等级:
    • 排名:第2920名
    • 原创:81篇
    • 转载:4篇
    • 译文:4篇
    • 评论:514条
    博客专栏
    博客公告