关闭

推荐系统算法简单总结

157人阅读 评论(0) 收藏 举报
分类:
1、协同过滤和基于内容推荐有什么区别?
用户u1喜欢的电影是A,B,C
用户u2喜欢的电影是A, C, E, F
用户u3喜欢的电影是B,D
我们需要解决的问题是:决定对u1是不是应该推荐F这部电影
基于内容的做法:要分析F的特征和u1所喜欢的A、B、C的特征,需要知道的信息是A(战争片),B(战争片),C(剧情片),如果F(战争片),那么F很大程度上可以推荐给u1,这是基于内容的做法,你需要对item进行特征建立和建模。
协同过滤的办法:那么你完全可以忽略item的建模,因为这种办法的决策是依赖user和item之间的关系,也就是这里的用户和电影之间的关系。我们不再需要知道ABCF哪些是战争片,哪些是剧情片,我们只需要知道用户u1和u2按照item向量表示,他们的相似度比较高,那么我们可以把u2所喜欢的F这部影片推荐给u1。

转自:http://www.zhihu.com/question/19971859


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:245275次
    • 积分:3223
    • 等级:
    • 排名:第10567名
    • 原创:75篇
    • 转载:135篇
    • 译文:1篇
    • 评论:7条