推荐系统算法简单总结

转载 2016年08月29日 21:04:15
1、协同过滤和基于内容推荐有什么区别?
用户u1喜欢的电影是A,B,C
用户u2喜欢的电影是A, C, E, F
用户u3喜欢的电影是B,D
我们需要解决的问题是:决定对u1是不是应该推荐F这部电影
基于内容的做法:要分析F的特征和u1所喜欢的A、B、C的特征,需要知道的信息是A(战争片),B(战争片),C(剧情片),如果F(战争片),那么F很大程度上可以推荐给u1,这是基于内容的做法,你需要对item进行特征建立和建模。
协同过滤的办法:那么你完全可以忽略item的建模,因为这种办法的决策是依赖user和item之间的关系,也就是这里的用户和电影之间的关系。我们不再需要知道ABCF哪些是战争片,哪些是剧情片,我们只需要知道用户u1和u2按照item向量表示,他们的相似度比较高,那么我们可以把u2所喜欢的F这部影片推荐给u1。

转自:http://www.zhihu.com/question/19971859


采用KNN算法实现一个简单的推荐系统

1. 基于相似用户的KNN 选用公式如下: 2. 基于相似物品的KNN 要求: 1. 纯PYTHON代码实现 2. 利用SKLEARN开发包实验   实验要求: 1. 数据集:    Moviel...

电影推荐系统设计思路(简单易懂的算法理解)

我在留学期间设计的一个电影推荐系统的设计思路,因为我觉得比较有趣,所以放出来也算是一个怀念 Method of measuring the quality recommendation system...

内容分发平台个性化推荐系统经验简单总结

source: http://blog.csdn.net/yangbutao/article/details/42319317 推荐在电商和互联网应用中已经应用的非常广泛,相比于根据...

推荐系统3种主要算法学习笔记与总结

音乐推荐与普通商品推荐的

推荐系统算法总结

http://somemory.com/myblog/?post=12 推荐系统算法总结 作者:阿俊 发布于:2011-11-29 19:08 Tuesday 分类:推荐系统 最近看推荐系统...

主要推荐系统算法总结及Youtube深度学习推荐算法实例概括

主要推荐系统算法总结及Youtube深度学习推荐算法实例概括 By ZhuZhiboSmith2017年7月09日 17:00 现如今,许多公司使用大数据来做超级相关推荐,并以此来增加...

python简单的推荐系统

  • 2017年11月14日 22:36
  • 829B
  • 下载

利用皮尔逊相关度系数构建一个简单的推荐系统

by 小戴 伴随着Web2.0概念的普及,我们正在广泛地享受推荐系统给我们带来的便利。 现代的电子商务、SNS社区等应用大量地使用了推荐系统。通过推荐系统,人人网帮我们找到多年未见的老...
  • Hou_Rj
  • Hou_Rj
  • 2011年10月12日 17:17
  • 2011
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:推荐系统算法简单总结
举报原因:
原因补充:

(最多只允许输入30个字)