如何在训练过的yolov模型中增加新的识别类

当需要在已有的3分类模型中增加一个类别时,可以考虑两种策略:一是对数据集进行微调,构建包含4个类别的新数据集,并调整epochs;二是如果模型支持更多类别,可以加载之前的权重进行训练。有观点认为应使用last.pt而不是best.pt,因为best可能不包含所有节点信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

比如目前训练了一个3分类的模型,现在根据业务需要,新增加1个类别,如何进行数据集的构建及训练?

方案:

1、对数据的权重对网络进行微调,构建包含3个类别的数据集进行微调训练,epochs不用设置得那么多了。

2、看你模型目前能分多少类,如果只有2类,抱歉,只能全部重新训练。如果还有没用的类别,可以再训练时加载上次的best.pt(或last.pt--具体哪个效果好,还没进行实验验证)就行。

【备注】

有博主提示:不能加载best,只能加载last,best里面没有节点信息

### 增量训练YOLOv11模型以支持新类别 对于已经在YOLOv11上完成初步训练模型,如果希望向其中添加新的检测目标,则需要遵循特定流程来确保新增加的数据能够被有效学习而不破坏原有性能。 #### 准备工作 - **更新数据集配置文件**:假设当前使用的`data.yaml`定义了旧版本中的所有参数,在引入额外标签之前,应当先编辑此文件以便反映最新变化。具体来说,需调整`nc`字段至适当数值(代表总类别数),同时修改`names`列表以囊括全部名称[^1]。 ```yaml train: path/to/train/images/ val: path/to/validation/images/ nc: 12 # 新增后的总类别数量 names: ['person', 'bicycle', ..., 'new_category'] # 添加的新类别名位于最后 ``` - **整理扩展后的图像资源及其标注信息** - 收集团队成员穿戴安全帽场景下的照片作为补充素材; - 利用LabelImg或其他工具为上述图片打上精确边界框,并保存对应的`.txt`描述文档; #### 执行增量训练过程 为了使网络更好地适应新增项而不会遗忘先前习得的知识点,推荐采用迁移学习策略——即基于现有权重继续优化而非完全重置初始化状态。可以参照以下命令行指令启动新一轮迭代: ```bash yolo task=detect mode=train \ model=path_to_your_pretrained_model.pt \ epochs=additional_epochs_count \ batch=batch_size \ data=newly_updated_data_yaml_path \ freeze=[10,20] # 可选参数,冻结部分层有助于稳定微调效果 ``` 此处的关键在于指定恰当的学习率以及合理的epoch次数,这取决于实际应用场景的具体需求与硬件条件限制。另外值得注意的是,通过设置`freeze`选项可以选择性锁定某些卷积层不变,从而减少过拟合风险并加快收敛速度。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值