如何在训练过的yolov模型中增加新的识别类

当需要在已有的3分类模型中增加一个类别时,可以考虑两种策略:一是对数据集进行微调,构建包含4个类别的新数据集,并调整epochs;二是如果模型支持更多类别,可以加载之前的权重进行训练。有观点认为应使用last.pt而不是best.pt,因为best可能不包含所有节点信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

比如目前训练了一个3分类的模型,现在根据业务需要,新增加1个类别,如何进行数据集的构建及训练?

方案:

1、对数据的权重对网络进行微调,构建包含3个类别的数据集进行微调训练,epochs不用设置得那么多了。

2、看你模型目前能分多少类,如果只有2类,抱歉,只能全部重新训练。如果还有没用的类别,可以再训练时加载上次的best.pt(或last.pt--具体哪个效果好,还没进行实验验证)就行。

【备注】

有博主提示:不能加载best,只能加载last,best里面没有节点信息

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值