1030. Travel Plan (30)

考察最短路及其路径记录

#include <algorithm>
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
#define  INF 0x6FFFFFFF
typedef struct Node
{
	int dis, cost, path;
	Node(){dis=INF; cost=INF; path=-1;}
}Node;
typedef struct Edge
{
	int end, dis, cost;
	Edge(int e, int d, int c){end = e; dis = d; cost = c;}
};
int n, m, s, t;
vector<vector<Edge>> edge;
vector<int> path;
vector<Node> city;
std::vector<bool> visited;

int FindMin()
{
	int mmin = INF;
	int k = -1;
	for (int i = 0; i < n; ++i)
	{
		if(!visited[i] && city[i].dis < mmin)
		{
			mmin = city[i].dis;
			k = i;
		}
	}
	return k;
}
void Dijkstra(int s, int t)
{
	visited.assign(n, false);
	city.clear();
	city.resize(n);
	city[s].dis = 0; city[s].cost = 0;
	while(true)
	{
		int u = FindMin();
		if(u == -1)
			return;
		visited[u] = true;
		for (int i = 0; i < edge[u].size(); ++i)
		{
			int v = edge[u][i].end;
			int cost = edge[u][i].cost;
			int dis = edge[u][i].dis;
			if (!visited[v])
			{
				if (city[v].dis > city[u].dis+dis)
				{
					city[v].dis	= city[u].dis+dis;
					city[v].cost = city[u].cost+cost;
					city[v].path = u;
				}
				else if (city[v].dis == city[u].dis+dis 
					&& city[v].cost > city[u].cost+cost)
				{
					city[v].cost = city[u].cost+cost;
					city[v].path = u;
				}
			}
		}
	}
	
}
void OutputPath(int t)
{
	stack<int> ans;
	ans.push(t);
	while(city[t].path != -1)
	{
		t = city[t].path;
		ans.push(t);
	}
	while (!ans.empty())
	{
		printf("%d ", ans.top());
		ans.pop();
	}
}
int main()
{
	while (scanf("%d%d%d%d",&n,&m,&s,&t)!=EOF)
	{
		edge.clear();
		edge.resize(n);
		while (m--)
		{
			int u, v, d, c;
			scanf("%d%d%d%d",&u,&v,&d,&c);
			edge[u].push_back(Edge(v, d, c));
			edge[v].push_back(Edge(u, d, c));
		}
		//dijkstra
		Dijkstra(s, t);
		OutputPath(t);
		printf("%d %d\n",city[t].dis, city[t].cost);
	}
	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI记忆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值