[LeetCode]Interleaving String

C++代码解决字符串交织问题
本文详细介绍了使用C++实现的两种方法来解决字符串交织问题:深度优先搜索(DFS)和动态规划(DP)。通过解析给定的代码片段,解释了如何在字符串s1、s2和s3之间进行交织匹配。
struct TreeNode {
	int val;
	TreeNode *left;
	TreeNode *right;
	TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};

class Solution {
//solution 1: DFS, it is straight forward every character in s3
//comes from either s1 or s2, but it is time-consuming
//solution 2: DP. define f[i][j]: if s3(1, i+j) interleaved by s1(1,i) s2(1,j)?
//(1)than the transform equation is below: 
//if s1[i] == s3[i+j], f[i][j] = f[i-1][j]
//if s2[j] == s3[i+j], f[i][j] = f[i][j-1]
//(2)the initialize is below :
//f[0][0] = true,
//f[i][0] = f[i-1][0] && (s1[i-1] == s3[i-1]);
//f[0][j] = f[0][j-1] && (s2[j-1] == s3[j-1]);
public:
	bool isInterleave(string s1, string s2, string s3) {
		// Start typing your C/C++ solution below
		// DO NOT write int main() function    
		return DP(s1, s2, s3);
	}

	bool DP( string s1, string s2, string s3 ) 
	{
		int n1 = s1.size();
		int n2 = s2.size();
		if(n1+n2 != s3.size())
			return false;
		//init
		vector<vector<bool>> f(n1+1, vector<bool>(n2+1, false));
		f[0][0] = true;
		for(int i = 1; i <= n1; ++i)
			f[i][0] = f[i-1][0] && (s1[i-1] == s3[i-1]);
		for(int j = 1; j <= n2; ++j)
			f[0][j] = f[0][j-1] && (s2[j-1] == s3[j-1]);
		//transform
		for (int i = 1; i <= n1; ++i)
		{
			for (int j = 1; j <= n2; ++j)
			{
				if(s1[i-1] == s3[i+j-1])
					f[i][j] = f[i][j] || f[i-1][j];
				if(s2[j-1] == s3[i+j-1])
					f[i][j] = f[i][j] || f[i][j-1];
			}
		}
		return f[n1][n2];
	}


};

second time

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function    
        int n1 = s1.size();
        int n2 = s2.size();
        if(n1+n2 != s3.size()) return false;
        vector<vector<bool> > f(n1+1, vector<bool>(n2+1, false));
        f[0][0] = true;
        for(int i = 0; i <= n1; ++i)
        {
            for(int j = 0; j <= n2; ++j)
            {
                int len = i+j;
                if(i >= 1 && s1[i-1] == s3[len-1]) f[i][j] = f[i][j] || f[i-1][j];
                if(j >= 1 && s2[j-1] == s3[len-1]) f[i][j] = f[i][j] || f[i][j-1];
            }
        }
        return f[n1][n2];
    }
};


内容概要:本文围绕【卡尔曼滤波】具有梯度流的一类系统的扩散映射卡尔曼滤波器研究(Matlab代码实现)“具有梯度流的一类系统的扩散映射卡尔曼滤波器研究”展开,重点介绍了一种结合扩散映射与卡尔曼滤波的新型滤波方法,适用于存在模型不确定性或混沌特征的动态系统状态估计。该方法利用梯度流信息提升滤波性能,在可预测性较高的阶段对混沌系统具备一定的预测能力,并通过Matlab代码实现验证其有效性。文档还附带多个相关研究主题,涵盖故障诊断、路径规划、信号处理、无人机控制、电力系统优化等多个领域,展示了卡尔曼滤波及其他先进算法在工程实践中的广泛应用。; 适合人群:具备一定数学基础和编程能力,从事控制理论、信号处理、自动化、航空航天、机器人或相关工程领域的研究生、科研人员及工程师。; 使用场景及目标:①研究复杂动态系统(如混沌系统)的状态估计与预测问题;②提升在模型不准确或噪声干扰严重情况下的滤波精度;③结合Matlab仿真平台开展算法开发与验证,推动理论成果向实际应用转化; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解扩散映射与卡尔曼滤波的融合机制,同时可参考文中列举的多种应用场景拓展思路,注重算法原理与工程实现的结合。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI记忆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值