浮点数的二进制表示

原文:http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.html

1.

前几天,我在读一本C语言教材,有一道例题:

  #include <stdio.h>

  void main(void){

    int num=9; /* num是整型变量,设为9 */

    float* pFloat=&num; /* pFloat表示num的内存地址,但是设为浮点数 */

    printf("num的值为:%d\n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f\n",*pFloat); /* 显示num的浮点值 */

    *pFloat=9.0; /* 将num的值改为浮点数 */

    printf("num的值为:%d\n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f\n",*pFloat); /* 显示num的浮点值 */

  }

运行结果如下:

  num的值为:9
  *pFloat的值为:0.000000
  num的值为:1091567616
  *pFloat的值为:9.000000

我很惊讶,num和*pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。我读了一些资料,下面就是我的笔记。

2.

在讨论浮点数之前,先看一下整数在计算机内部是怎样表示的。

  int num=9;

上面这条命令,声明了一个整数变量,类型为int,值为9(二进制写法为1001)。普通的32位计算机,用4个字节表示int变量,所以9就被保存为00000000 00000000 00000000 00001001,写成16进制就是0x00000009。

那么,我们的问题就简化成:为什么0x00000009还原成浮点数,就成了0.000000?

3.

根据国际标准IEEE 754,任意一个二进制浮点数V可以表示成下面的形式:

  

  (1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

  (2)M表示有效数字,大于等于1,小于2。

  (3)2^E表示指数位。

举例来说,十进制的5.0,写成二进制是101.0,相当于1.01×2^2。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

十进制的-5.0,写成二进制是-101.0,相当于-1.01×2^2。那么,s=1,M=1.01,E=2。

IEEE 754规定,对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

5.

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,E的真实值必须再减去一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E还可以再分成三种情况:

(1)E不全为0或不全为1。这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

(2)E全为0。这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

(3)E全为1。这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。

6.

好了,关于浮点数的表示规则,就说到这里。

下面,让我们回到一开始的问题:为什么0x00000009还原成浮点数,就成了0.000000?

首先,将0x00000009拆分,得到第一位符号位s=0,后面8位的指数E=00000000,最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)^0×0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

7.

再看例题的第二部分。

请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?

首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。

所以,写成二进制形式,应该是s+E+M,即0 10000010 001 0000 0000 0000 0000 0000。这个32位的二进制数,还原成十进制,正是1091567616。


.IEEE浮点数表示法 
  
月初还在上班的时候,就天天盼望着过年放长假,然而终于熬到了过年,却发现自己的12天的长假将在碌碌无为中度过,朋友们又一个接一个的远去,心里真是拔凉拔凉的啊!最近版上的人气有点低落,连违规率(不敢说犯罪率哈,怕被人砍)都下降了不少,我想在春节这档子这是免不了的,论坛上应该有不上工作的朋友可能都回家团聚了。那像我这种无家可归的人除了眼馋别人的幸福,那就只有向仍然全力支持着我们C++/面向对象这个大家庭的兄弟姐妹们拜个年,祝来年薪水猛涨,职位高升,身体健康,家庭幸福! 

最近一段时间看到版上关于C++里浮点变量精度的讨论比较多,那么我就给对这个问题有疑惑的人详细的讲解一下intel的处理器上是如何处理浮点数的。为了能更方便的讲解,我在这里只以float型为例,从存储结构和算法上来讲,double和float是一样的,不一样的地方仅仅是   float是32位的,double是64位的,所以double能存储更高的精度。还要说的一点是文章和程序一样,兼容性是有一定范围的,所以你想要完全读懂本文,你最好对二进制、十进制、十六进制的转换有比较深入的了解,了解数据在内存中的存储结构,并且会使用VC.net编译简单的控制台程序。   OK,下面我们开始。 

大家都知道任何数据在内存中都是以二进制(1或着0)顺序存储的,每一个1或着0被称为1位,而在x86CPU上一个字节是8位。比如一个16位(2字节)的short   int型变量的值是1156,那么它的二进制表达就是:00000100   10000100。由于Intel   CPU的架构是Little   Endian(请参数机算机原理相关知识),所以它是按字节倒序存储的,那么就因该是这样:10000100   00000100,这就是定点数1156在内存中的结构。 

那么浮点数是如何存储的呢?目前已知的所有的C/C++编译器都是按照IEEE   (国际电子电器工程师协会)制定的IEEE   浮点数表示法来进行运算的。这种结构是一种科学表示法,用符号(正或负)、指数和尾数来表示,底数被确定为2,也就是说是把一个浮点数表示为尾数乘以2的指数次方再加上符号。下面来看一下具体的float的规格: 

float 
共计32位,折合4字节 
由最高到最低位分别是第31、30、29、……、0位 
31位是符号位,1表示该数为负,0反之。 
30-23位,一共8位是指数位。 
22-0位,一共23位是尾数位。 
每8位分为一组,分成4组,分别是A组、B组、C组、D组。 
每一组是一个字节,在内存中逆序存储,即:DCBA 

我们先不考虑逆序存储的问题,因为那样会把读者彻底搞晕,所以我先按照顺序的来讲,最后再把他们翻过来就行了。 

现在让我们按照IEEE浮点数表示法,一步步的将float型浮点数12345.0f转换为十六进制代码。在处理这种不带小数的浮点数时,直接将整数部转化为二进制表示:1   11100010   01000000也可以这样表示:11110001001000000.0然后将小数点向左移,一直移到离最高位只有1位,就是最高位的1:   1.11100010010000000一共移动了16位,在布耳运算中小数点每向左移一位就等于在以2为底的科学计算法表示中指数+1,所以原数就等于这样:1.11100010010000000   *   (   2   ^   16   )好了,现在我们要的尾数和指数都出来了。显而易见,最高位永远是1,因为你不可能把买了16个鸡蛋说成是买了0016个鸡蛋吧?(呵呵,可别拿你买的臭鸡蛋甩我~),所以这个1我们还有必要保留他吗?(众:没有!)好的,我们删掉他。这样尾数的二进制就变成了:11100010010000000最后在尾数的后面补0,一直到补够23位:11100010010000000000000(MD,这些个0差点没把我数的背过气去~) 

再回来看指数,一共8位,可以表示范围是0   -   255的无符号整数,也可以表示-128   -   127的有符号整数。但因为指数是可以为负的,所以为了统一把十进制的整数化为二进制时,都先加上127,在这里,我们的16加上127后就变成了   143,二进制表示为:10001111 
12345.0f这个数是正的,所以符号位是0,那么我们按照前面讲的格式把它拼起来: 
0   10001111   11100010010000000000000 
01000111   11110001   00100000   00000000 
再转化为16进制为:47   F1   20   00,最后把它翻过来,就成了:00   20   F1   47。 
现在你自己把54321.0f转为二进制表示,自己动手练一下! 

有了上面的基础后,下面我再举一个带小数的例子来看一下为什么会出现精度问题。 
按照IEEE浮点数表示法,将float型浮点数123.456f转换为十六进制代码。对于这种带小数的就需要把整数部和小数部分开处理。整数部直接化二进制:100100011。小数部的处理比较麻烦一些,也不太好讲,可能反着讲效果好一点,比如有一个十进制纯小数0.57826,那么5是十分位,位阶是   1/10;7是百分位,位阶是1/100;8是千分位,位阶是1/1000……,这些位阶分母的关系是10^1、10^2、10^3……,现假设每一位的序列是{S1、S2、S3、……、Sn},在这里就是5、7、8、2、6,而这个纯小数就可以这样表示:n   =   S1   *   (   1   /   (   10   ^   1   )   )   +   S2   *   (   1   /   (   10   ^   2   )   )   +   S3   *   (   1   /   (   10   ^   3   )   )   +   ……   +   Sn   *   (   1   /   (   10   ^   n   )   )。把这个公式推广到b进制纯小数中就是这样: 
n   =   S1   *   (   1   /   (   b   ^   1   )   )   +   S2   *   (   1   /   (   b   ^   2   )   )   +   S3   *   (   1   /   (   b   ^   3   )   )   +   ……   +   Sn   *   (   1   /   (   b   ^   n   )   ) 

天哪,可恶的数学,我怎么快成了数学老师了!没办法,为了广大编程爱好者的切身利益,喝口水继续!现在一个二进制纯小数比如0.100101011就应该比较好理解了,这个数的位阶序列就因该是1/(2^1)、1/(2^2)、1/(2^3)、1/(2^4),即0.5、0.25、0.125、   0.0625……。乘以S序列中的1或着0算出每一项再相加就可以得出原数了。现在你的基础知识因该足够了,再回过头来看0.45这个十进制纯小数,化为该如何表示呢?现在你动手算一下,最好不要先看到答案,这样对你理解有好处。 


我想你已经迫不及待的想要看答案了,因为你发现这跟本算不出来!来看一下步骤:1   /   2   ^1位(为了方便,下面仅用2的指数来表示位),0.456小于位阶值0.5故为0;2位,0.456大于位阶值0.25,该位为1,并将0.45减去   0.25得0.206进下一位;3位,0.206大于位阶值0.125,该位为1,并将0.206减去0.125得0.081进下一位;4位,0.081   大于0.0625,为1,并将0.081减去0.0625得0.0185进下一位;5位0.0185小于0.03125,为0……问题出来了,即使超过尾数的最大长度23位也除不尽!这就是著名的浮点数精度问题了。不过我在这里不是要给大家讲《数值计算》,用各种方法来提高计算精度,因为那太庞杂了,恐怕我讲上一年也理不清个头绪啊。我在这里就仅把浮点数表示法讲清楚便达到目的了。 

OK,我们继续。嗯,刚说哪了?哦对对,那个数还没转完呢,反正最后一直求也求不尽,加上前面的整数部算够24位就行了:1111011.01110100101111001。某BC问:“不是23位吗?”我:   “倒,不是说过了要把第一个1去掉吗?当然要加一位喽!”现在开始向左移小数点,大家和我一起移,众:“1、2、3……”好了,一共移了6位,6加上   127得131(怎么跟教小学生似的?呵呵~),二进制表示为:10000101,符号位为……再……不说了,越说越啰嗦,大家自己看吧: 
0     10000101     11101101110100101111001 
42     F6     E9     79 
79     E9     F6     42 

下面再来讲如何将纯小数转化为十六进制。对于纯小数,比如0.0456,我们需要把他规格化,变为1.xxxx   *   (2   ^   n   )的型式,要求得纯小数X对应的n可用下面的公式: 
n   =   int(   1   +   log   (2)X   ); 

0.0456我们可以表示为1.4592乘以以2为底的-5次方的幂,即1.4592   *   (   2   ^   -5   )。转化为这样形式后,再按照上面第二个例子里的流程处理: 
1.   01110101100011100010001 
去掉第一个1 
01110101100011100010001 
-5   +   127   =   122 
0     01111010     01110101100011100010001 
最后: 
11   C7   3A   3D 

另外不得不提到的一点是0.0f对应的十六进制是00   00   00   00,记住就可以了。 

最后贴一个可以分析并输出浮点数结构的函数源代码,有兴趣的自己看看吧: 

//   输入4个字节的浮点数内存数据 
void   DecodeFloat(   BYTE   pByte[4]   ) 

  printf(   "原始(十进制):%d     %d     %d     %d\n "   ,   (int)pByte[0], 
    (int)pByte[1],   (int)pByte[2],   (int)pByte[3]   ); 
  printf(   "翻转(十进制):%d     %d     %d     %d\n "   ,   (int)pByte[3], 
    (int)pByte[2],   (int)pByte[1],   (int)pByte[0]   ); 
  bitset <32>   bitAll(   *(ULONG*)pByte   ); 
  string   strBinary   =   bitAll.to_string <char,   char_traits <char> ,   allocator <char>   > (); 
  strBinary.insert(   9,   "     "   ); 
  strBinary.insert(   1,   "     "   ); 
  cout   < <   "二进制: "   < <   strBinary.c_str()   < <   endl; 
  cout   < <   "符号: "   < <   (   bitAll[31]   ?   "- "   :   "+ "   )   < <   endl; 
  bitset <32>   bitTemp; 
  bitTemp   =   bitAll; 
  bitTemp   < <=   1; 
  LONG   ulExponent   =   0; 
  for   (   int   i   =   0;   i   <   8;   i++   ) 
  { 
    ulExponent   |=   (   bitTemp[   31   -   i   ]   < <   (   7   -   i   )   ); 
  } 
  ulExponent   -=   127; 
  cout   < <   "指数(十进制): "   < <   ulExponent   < <   endl; 
  bitTemp   =   bitAll; 
  bitTemp   < <=   9; 
  float   fMantissa   =   1.0f; 
  for   (   int   i   =   0;   i   <   23;   i++   ) 
  { 
    bool   b   =   bitTemp[   31   -   i   ]; 
    fMantissa   +=   (   (float)bitTemp[   31   -   i   ]   /   (float)(   2   < <   i   )   ); 
  } 
  cout   < <   "尾数(十进制): "     < <   fMantissa   < <   endl; 
  float   fPow; 
  if   (   ulExponent   > =   0   ) 
  { 
    fPow   =   (float)(   2   < <   (   ulExponent   -   1   )   ); 
  } 
  else 
  { 
    fPow   =   1.0f   /   (float)(   2   < <   (   -1   -   ulExponent   )   ); 
  } 
  cout   < <   "运算结果: "   < <   fMantissa   *   fPow   < <   endl; 


累死了,我才发现这篇文章虽然短,然而确是最难写的。上帝,我也不是机算机,然而为什么我满眼都只有1和0?看来我也快成了黑客帝国里的那个看通迅员了……希望大家能不辜负我的一翻辛苦,帮忙up吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值