poj1273 最大流

原创 2012年03月25日 11:25:21

用的是EdmondsKarp

程序可以再优化的,懒得优化了

EdmondsKarp

#include <iostream>
#include<stdio.h>
#include <queue>
#include <limits>
#include <cstring>

using namespace std;
const int maxNode = 202;
int N = 201;//edge
int M = 201;//node
const int maxInt = numeric_limits<int>::max();

int g[maxNode][maxNode];
int f[maxNode][maxNode];
int residual[maxNode][maxNode];
int pre[maxNode];


bool BFS()
{
	queue<int> q;
	q.push(1);
	memset(pre,0,sizeof(int)*(M+1));
	int used[maxNode];
	memset(used,0,sizeof(int)*(M+1));
	
	used[1] = 1;
	while (!q.empty())
	{
		int curr = q.front();
		q.pop();
		for (int i=1;i<=M;++i)
		{
			if(residual[curr][i]>0 && !used[i])
			{
				pre[i] = curr;
				if(i==M)
					return true;

				q.push(i);
				used[i] = 1;
			}
		}
	}

	return false;
}

void EdmondsKarp()
{
	while (BFS())
	{
		int minF = maxInt;
		int curr = M;
		int beg=0,end = 0;
		while (curr!=1)
		{
			int preNode = pre[curr];
			if(minF > residual[preNode][curr])
			{
				minF = residual[preNode][curr];
				beg = preNode;
				end = curr;
			}
			curr = preNode;
		}

		curr = M;
		while (curr != 1)
		{
			int preNode = pre[curr];
			f[preNode][curr] +=minF;
			residual[preNode][curr] -=minF;
			residual[curr][preNode] = f[preNode][curr];

			curr = preNode;
		}
	}

	int sum=0;
	for (int i=1;i<M;++i)
	{
		sum +=f[i][M];
	}
	cout<< sum<<endl;
}

int main()
{
	
	while(scanf("%d%d",&N,&M)!=EOF)
	{
		
		for (int i=1;i<=M;++i)
		{
			memset(g[i],0,sizeof(int)*(M+1));
			memset(f[i],0,sizeof(int)*(M+1));
			memset(residual[i],0,sizeof(int)*(M+1));
		}
		for (int i=0;i<N;++i)
		{
			int start,end,capacity;
			scanf("%d%d%d",&start,&end,&capacity);
			g[start][end] += capacity;//这个地方太坑爹了,不是最大的容量吗,为毛要加呢
			residual[start][end] += capacity;
		}

		/*for (int i=1;i<=M;++i)
		{
			for(int j=1;j<=M;++j)
				cout<<g[i][j]<<" ";
			cout<<endl;
		}*/

		EdmondsKarp();
	}

	return 0;
}




下面是别人优化的比较好的


#include<iostream>

#include<cstring>
#include<queue>
using namespace std;
#define inf INT_MAX
int n,m,a[205][205],pre[205];
int bfs()
{
    queue<int>Q;
    Q.push(1);
    pre[1]=0;
    memset(pre,-1,sizeof(pre));
    int t,i;
    while(!Q.empty())
    {
       t=Q.front();
       Q.pop();
       for(i=2;i<=n;i++)
       if(pre[i]==-1&&a[t][i]>0)
       {
          pre[i]=t;
          Q.push(i);
          if(i==n)   return 1;
       }
    }
    return -1;
}
int maxflow()
{
    int res=0,ans,t;
    while(bfs()==1)
    {
       t=n;
       ans=inf;
       while(t!=1)
       {
           if(a[pre[t]][t]<ans)   ans=a[pre[t]][t];
           t=pre[t];
       }           
       res=res+ans;
       t=n;
       while(t!=1)
       {
           a[pre[t]][t]-=ans;
           a[t][pre[t]]+=ans;
           t=pre[t];
       }
    }
    return res;
}
int main()
{
     while(scanf("%d%d",&m,&n)!=EOF)
     {
          int i,j;
          memset(a,0,sizeof(a));
          for(i=0;i<m;i++)
          {
              int b,c,d;
              scanf("%d%d%d",&b,&c,&d);
              a[b][c]+=d;
          }
          printf("%d\n",maxflow());
     }
}


最大流效率更高的算法为:

Push-Relabel算法

Relabel-to-Front算法(http://cuitianyi.com/blog/%E6%B1%82%E6%9C%80%E5%A4%A7%E6%B5%81%E7%9A%84relabel-to-front%E7%AE%97%E6%B3%95/

Preflow-Push算法

Dinic算法(可以参考国家集训队 2007 王欣上《浅谈基于分层思想的网络流算法》)


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

POJ-1273 Drainage Ditches【最大流】

题目链接:http://poj.org/problem?id=1273 题目大意: 有一个水塘,一个大海,要把水塘里的水尽可能多的排到大海里。当然,要通过一些水渠,这些水渠有一定的容量限制。 问...

POJ-1273-Drainage Ditches(最大流)dinic实现 后续模板待补充

Sample Input 5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10 Sample Output 50 #include #include #i...

poj 1273 Drainage Ditches 最大流问题.

Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 68476 Accep...

poj 1273 Drainage Ditches (最大流Dinic)

题目链接:   1273 题目大意:   有N个点和M条边,每条边最大的流量为c,初始流量为0                   1为源点,n为汇点求最大流 解题思路...

poj1273&&nefu473Drainage DitchesHal Burch(最大流)

这题是标准的入门模板题,不过因为点是从0开始的,而这道题目是没有0的,所以要不然就在prepare语句那里写成prepare(m+1,1,m),要不然就从0开始,把每个点减一#include #inc...

POJ1273 Drainage Ditches(裸最大流,EK,DINIC)

注意重边。 EK: #include #include #include #define min(a,b) a<b?a:b using namespace std; const int N...

POJ-1273-Drainage Ditches(网络最大流 标号法)

Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 69828 Acce...

(POJ1273)Drainage Ditches(裸最大流,EK模板)

Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 68869 Acce...

hdu 1532 && poj 1273 (基础最大流)

刚学最大流算法,一道简单的最大流问题,思路就是找出每条从s->t的路径中最小的残量a[t](最大流量-已流的流量)将路径上的流量都增加a[t],直到残量为0; #include #includ...

POJ1273 Drainage Ditches 【最大流Dinic】

Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 56870   Accepted...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)