关闭

【bzoj2360】【cstc2011】【幸福路径】【倍增+floyd】

251人阅读 评论(0) 收藏 举报
分类:

Description

有向图 G有n个顶点 1,  2, …,  n,点i 的权值为 w(i)。现在有一只蚂蚁,从
给定的起点 v0出发,沿着图 G 的边爬行。开始时,它的体力为 1。每爬过一条
边,它的体力都会下降为原来的 ρ 倍,其中ρ 是一个给定的小于1的正常数。而
蚂蚁爬到某个顶点时的幸福度,是它当时的体力与该点权值的乘积。 
我们把蚂蚁在爬行路径上幸福度的总和记为 H。很显然,对于不同的爬行路
径,H 的值也可能不同。小 Z 对 H 值的最大可能值很感兴趣,你能帮助他计算
吗?注意,蚂蚁爬行的路径长度可能是无穷的。

Input

每一行中两个数之间用一个空格隔开。 
输入文件第一行包含两个正整数 n,  m,分别表示 G 中顶点的个数和边的条
数。 
第二行包含 n个非负实数,依次表示 n个顶点权值 w(1), w(2), …, w(n)。 
第三行包含一个正整数 v0,表示给定的起点。 
第四行包含一个实数 ρ,表示给定的小于 1的正常数。 
接下来 m行,每行两个正整数 x, y,表示<x, y>是G的一条有向边。可能有
自环,但不会有重边。

Output

仅包含一个实数,即 H值的最大可能值,四舍五入到小数点后一位。

Sample Input

5 5
10.0 8.0 8.0 8.0 15.0
1
0.5
1 2
2 3
3 4
4 2
4 5

Sample Output

18.0

HINT

对于 100%的数据, n ≤ 100, m ≤ 1000, ρ ≤ 1 – 10^-6

, w(i) ≤ 100 (i = 1, 2, …, n)。

题解:用f[i][j][k]表示从i走到j走2^k步的最大值。

           则f[i][j][k]=max(f[i][j][k],f[i][p][k-1]+f[p][j][k-1]*p^(2^(k-1));

因为本题对精度要求不是很高,所以倍增上30遍即可得到正确答案。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 110
using namespace std;
double f[N][N],g[N][N],a[N],t,p,ans;
int n,m,st,x,y; 
int main(){  
  scanf("%d%d",&n,&m);
  for (int i=1;i<=n;i++) scanf("%lf",&a[i]);
  scanf("%d%lf",&st,&p);
  memset(f,-20,sizeof(f));
  for (int i=1;i<=m;i++){scanf("%d%d",&x,&y);f[x][y]=a[y];}
  t=p;            
  for (int q=1;q<=30;q+=1,t*=t){
    for (int i=1;i<=n;i++)
      for (int j=1;j<=n;j++)
        g[i][j]=f[i][j];
    for (int k=1;k<=n;k++)
     for (int i=1;i<=n;i++)
      for (int j=1;j<=n;j++)
       f[i][j]=max(f[i][j],g[i][k]+g[k][j]*t);
   }
  for (int i=1;i<=n;i++) ans=max(ans,f[st][i]);
  printf("%.1lf",ans*p+a[st]);  
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:195074次
    • 积分:6345
    • 等级:
    • 排名:第3831名
    • 原创:455篇
    • 转载:1篇
    • 译文:0篇
    • 评论:5条
    最新评论