跑路
题目描述
小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。
输入格式
第一行两个整数n,m,表示点的个数和边的个数。
接下来m行每行两个数字u,v,表示一条u到v的边。
输出格式
一行一个数字,表示到公司的最少秒数。
设一个 vis[i][j][k] 数组,表示 i 到 j 的距离可以是 2^k ;
一但可以为 2^k ,那么 i 到 j 的时间就是 1s;
然后运用倍增思路,如果点 i 到 l 的距离可以为 2^(k-1) , l 到 j 的距离可以为 2 ^(k-1) ,那么 i 到 j 的距离可以为2 ^k ,也就是可以1s到达;
最后求得所有可以一秒到达的点,直接Floyd一遍求最短路;
为什么只要求到达1s的点呢?因为所有点都可以用1s的点连接起来;
代码:
#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,int>
#define ls k<<1
#define rs k<<1|1
#define inf 0x3f3f3f3f
using namespace std;
const int N=100;
const int M=10100;
const LL mod=1e9+7;
int n,m,dis[N][N];
bool vis[N][N][N];
int main(){
memset(dis,inf,sizeof(dis));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int u,v;scanf("%d%d",&u,&v);
vis[u][v][0]=true;
dis[u][v]=1;
}
for(int k=1;k<=64;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){//中转点
for(int l=1;l<=n;l++){
if(vis[i][j][k-1]&&vis[j][l][k-1]){
vis[i][l][k]=true;
dis[i][l]=1;
}
}
}
}
}
for(int k=1;k<=n;k++){
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);//floyd
}
}
}
printf("%d\n",dis[1][n]);
return 0;
}