Description
给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点。之后你将依次收到k个指令,每个指令包含两个整数d和t,你需要沿着最短路在t步之内(包含t步)走到d点,如果不能走到,则停在最后到达的那个点。请在每个指令之后输出你所在的位置。
Input
第一行包含三个正整数n,m,k(1<=m<=n<=1000000,1<=k<=1000000)。
接下来n-1行,每行包含两个正整数x,y(1<=x,y<=n),描述一条树边。
接下来k行,每行两个整数d,t(1<=d<=n,0<=t<=10^9),描述一条指令。
Output
输出一行,包含k个正整数,即执行每条指令后你所在的位置。
Sample Input
3 1 2
1 2
2 3
3 4
1 1
1 2
2 3
3 4
1 1
Sample Output
3 2
题解:
树上倍增裸题。
代码:
#include<iostream>
#include<cstdio>
#define N 1000100
using namespace std;
struct use{int st,en;}e[N*2];
int x,y,cnt,point[N],next[N*2],fa[N][30],s,n,k,d,l,now,deep[N];
void add(int x,int y){
next[++cnt]=point[x];point[x]=cnt;
e[cnt].st=x;e[cnt].en=y;
}
void dfs(int x){
for (int i=1;(1<<i)<=deep[x];i++)fa[x][i]=fa[fa[x][i-1]][i-1];
for (int i=point[x];i;i=next[i])
if (e[i].en!=fa[x][0]){deep[e[i].en]=deep[x]+1;fa[e[i].en][0]=x;dfs(e[i].en);}
}
int lca(int x,int y){
if (deep[x]<deep[y]) swap(x,y);int t=deep[x]-deep[y];
for (int i=0;i<=20;i++) if (t&(1<<i)) x=fa[x][i];
for (int i=20;i>=0;i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
if (x==y) return x;else return fa[x][0];
}
int main(){
scanf("%d%d%d",&n,&now,&k);
for (int i=1;i<n;i++){scanf("%d%d",&x,&y);add(x,y);add(y,x);}dfs(1);
for (int i=1;i<=k;i++){
scanf("%d%d",&d,&l);int f=lca(now,d);
if (deep[d]+deep[now]-2*deep[f]<=l){printf("%d ",d);now=d;continue;}
else{
if (deep[now]-deep[f]>=l){
for (int j=0;j<=20;j++) if (l&(1<<j)) now=fa[now][j];
}
else{
l=deep[d]-deep[f]-(l-(deep[now]-deep[f]));
for (int j=0;j<=20;j++) if (l&(1<<j)) d=fa[d][j];
now=d;
}
printf("%d ",now);
}
}
}