关闭

transfer learning

台湾大学李宏毅老师的机器学习课程是一份非常好的ML/DL入门资料,李宏毅老师将课程录像上传到了YouTube,地址:NTUEE ML 2016 。 这篇文章是学习本课程第19-21课所做的笔记和自己的理解。Lecture 19: Transfer Learning 迁移学习要解决的问题是:假设现在手上有与task不直接相关的data,这些data能否帮助我们完成task呢? 比如现在要做猫狗的分...
阅读(61) 评论(0)

深度学习常用优化方法

深度解读最流行的优化算法:梯度下降 【本文转载自机器之心   翻译:沈泽江 原文地址:http://www.jiqizhixin.com/article/1857】梯度下降法,是当今最流行的优化(optimization)算法,亦是至今最常用的优化神经网络的方法。本文旨在让你对不同的优化梯度下降法的算法有一个直观认识,以帮助你使用这些算法。我们首先会考察梯度下降法的各种变体,然后会简要地总结在训练...
阅读(117) 评论(0)

optimizers总结

最近在看Google的Deep Learning一书,看到优化方法那一部分,正巧之前用tensorflow也是对那些优化方法一知半解的,所以看完后就整理了下放上来,主要是一阶的梯度法,包括SGD, Momentum, Nesterov Momentum, AdaGrad, RMSProp, Adam。 其中SGD,Momentum,Nesterov Momentum是手动指定学习速率的,而后面的Ad...
阅读(63) 评论(0)

CSDN如何转载文章

Chrome浏览器打开要转载的文章右键鼠标,选择检查ctrl+F 找到article_content并选中右键选择copy—> copy element最后复制到你的文章中去 环境:opencv2.4,matplotlib2.02OpenCV支持的目标检测的方法是利用样本的Haar特征进行的分类器训练,得到的级联分类器(Cascade Classification)#...
阅读(56) 评论(0)

Batch Normalization

Batch Normalization 学习笔记原文地址:http://blog.csdn.net/hjimce/article/details/50866313 作者:hjimce 一、背景意义 本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Training by  Reducing...
阅读(75) 评论(0)

data augmentation and dropout

在深度学习方法中,更多的训练数据,意味着可以用更深的网络,训练出更好的模型。 方法: (1)将原始图片旋转一个小角度(2)添加随机噪声(3)一些有弹性的畸变(elastic distortions)(4)截取(crop)原始图片的一部分。Dropout则是通过修改神经网络本身来实现的,它是在训练网络时用的一种技巧(trike)。它的流程如下假设我们要训练上图这个网络,在训练开始时,我们随机地“删...
阅读(37) 评论(0)

Regularization

正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合)。其直观的表现如下图所示,随着训练过程,网络在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work我们常常将原始数据集分为三部分:training data、val...
阅读(49) 评论(0)

RCNN+fast RCNN+faster RCNN

图像检测:图像识别+定位识别: 定位: 重叠度(IOU): 物体检测需要定位出物体的bounding box,对于bounding box的定位精度,有一个很重要的概念: 因为我们算法不可能百分百跟人工标注的数据完全匹配,因此就存在一个定位精度评价公式:IOU。 它定义了两个bounding box的重叠度,如下图所示构建模型加速网络: Region Proposalselective se...
阅读(91) 评论(0)

Selective Search

目标检测的第一步是要做区域提名(Region Proposal),也就是找出可能的感兴趣区域(Region Of Interest, ROI)。区域提名可能的方法有:一、滑动窗口。滑动窗口本质上就是穷举法,利用不同的尺度和长宽比把所有可能的大大小小的块都穷举出来,然后送去识别,识别出来概率大的就留下来。很明显,这样的方法复杂度太高,产生了很多的冗余候选区域,在现实当中不可行。二、规则块。在穷举法的基...
阅读(103) 评论(0)

TensorFlow Object Detection API

安装jupyter notebookpython -m pip install –upgrade –force pip pip install setuptools==33.1.1 sudo pip install jupyter 以管理员身份打开 jupyter notebook –allow-root安装相应的依赖环境Protobuf 2.6 ,Pillow 1.0 ,lxml ,Mat...
阅读(182) 评论(0)
146条 共15页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:27954次
    • 积分:1643
    • 等级:
    • 排名:千里之外
    • 原创:133篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条