第14周项目1-(4)验证平衡二叉树相关算法

问题及代码:

/*  
* Copyright (c)2016,烟台大学计算机与控制工程学院  
* All rights reserved.  
* 文件名称:项目1-4.cpp  
* 作    者:孙子晴
* 完成日期:2016年12月8日  
* 版 本 号:v1.0  
  
* 问题描述:验证平衡二叉树相关算法  
  
* 输入描述:无  
* 程序输出:测试数据  
*/     

代码:
#include <stdio.h>  
#include <malloc.h>  
typedef int KeyType;                    //定义关键字类型  
typedef char InfoType;  
typedef struct node                     //记录类型  
{  
    KeyType key;                        //关键字项  
    int bf;                             //平衡因子  
    InfoType data;                      //其他数据域  
    struct node *lchild,*rchild;        //左右孩子指针  
} BSTNode;  
void LeftProcess(BSTNode *&p,int &taller)  
//对以指针p所指结点为根的二叉树作左平衡旋转处理,本算法结束时,指针p指向新的根结点  
{  
    BSTNode *p1,*p2;  
    if (p->bf==0)           //原本左、右子树等高,现因左子树增高而使树增高  
    {  
        p->bf=1;  
        taller=1;  
    }  
    else if (p->bf==-1)     //原本右子树比左子树高,现左、右子树等高  
    {  
        p->bf=0;  
        taller=0;  
    }  
    else                    //原本左子树比右子树高,需作左子树的平衡处理  
    {  
        p1=p->lchild;       //p指向*p的左子树根结点  
        if (p1->bf==1)      //新结点插入在*b的左孩子的左子树上,要作LL调整  
        {  
            p->lchild=p1->rchild;  
            p1->rchild=p;  
            p->bf=p1->bf=0;  
            p=p1;  
        }  
        else if (p1->bf==-1)    //新结点插入在*b的左孩子的右子树上,要作LR调整  
        {  
            p2=p1->rchild;  
            p1->rchild=p2->lchild;  
            p2->lchild=p1;  
            p->lchild=p2->rchild;  
            p2->rchild=p;  
            if (p2->bf==0)          //新结点插在*p2处作为叶子结点的情况  
                p->bf=p1->bf=0;  
            else if (p2->bf==1)     //新结点插在*p2的左子树上的情况  
            {  
                p1->bf=0;  
                p->bf=-1;  
            }  
            else                    //新结点插在*p2的右子树上的情况  
            {  
                p1->bf=1;  
                p->bf=0;  
            }  
            p=p2;  
            p->bf=0;            //仍将p指向新的根结点,并置其bf值为0  
        }  
        taller=0;  
    }  
}  
void RightProcess(BSTNode *&p,int &taller)  
//对以指针p所指结点为根的二叉树作右平衡旋转处理,本算法结束时,指针p指向新的根结点  
{  
    BSTNode *p1,*p2;  
    if (p->bf==0)           //原本左、右子树等高,现因右子树增高而使树增高  
    {  
        p->bf=-1;  
        taller=1;  
    }  
    else if (p->bf==1)      //原本左子树比右子树高,现左、右子树等高  
    {  
        p->bf=0;  
        taller=0;  
    }  
    else                    //原本右子树比左子树高,需作右子树的平衡处理  
    {  
        p1=p->rchild;       //p指向*p的右子树根结点  
        if (p1->bf==-1)     //新结点插入在*b的右孩子的右子树上,要作RR调整  
        {  
            p->rchild=p1->lchild;  
            p1->lchild=p;  
            p->bf=p1->bf=0;  
            p=p1;  
        }  
        else if (p1->bf==1) //新结点插入在*p的右孩子的左子树上,要作RL调整  
        {  
            p2=p1->lchild;  
            p1->lchild=p2->rchild;  
            p2->rchild=p1;  
            p->rchild=p2->lchild;  
            p2->lchild=p;  
            if (p2->bf==0)          //新结点插在*p2处作为叶子结点的情况  
                p->bf=p1->bf=0;  
            else if (p2->bf==-1)    //新结点插在*p2的右子树上的情况  
            {  
                p1->bf=0;  
                p->bf=1;  
            }  
            else                    //新结点插在*p2的左子树上的情况  
            {  
                p1->bf=-1;  
                p->bf=0;  
            }  
            p=p2;  
            p->bf=0;            //仍将p指向新的根结点,并置其bf值为0  
        }  
        taller=0;  
    }  
}  
int InsertAVL(BSTNode *&b,KeyType e,int &taller)  
/*若在平衡的二叉排序树b中不存在和e有相同关键字的结点,则插入一个 
  数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树 
  失去平衡,则作平衡旋转处理,布尔变量taller反映b长高与否*/  
{  
    if(b==NULL)         //原为空树,插入新结点,树“长高”,置taller为1  
    {  
        b=(BSTNode *)malloc(sizeof(BSTNode));  
        b->key=e;  
        b->lchild=b->rchild=NULL;  
        b->bf=0;  
        taller=1;  
    }  
    else  
    {  
        if (e==b->key)              //树中已存在和e有相同关键字的结点则不再插入  
        {  
            taller=0;  
            return 0;  
        }  
        if (e<b->key)               //应继续在*b的左子树中进行搜索  
        {  
            if ((InsertAVL(b->lchild,e,taller))==0) //未插入  
                return 0;  
            if (taller==1)          //已插入到*b的左子树中且左子树“长高”  
                LeftProcess(b,taller);  
        }  
        else                        //应继续在*b的右子树中进行搜索  
        {  
            if ((InsertAVL(b->rchild,e,taller))==0) //未插入  
                return 0;  
            if (taller==1)          //已插入到b的右子树且右子树“长高”  
                RightProcess(b,taller);  
        }  
    }  
    return 1;  
}  
void DispBSTree(BSTNode *b) //以括号表示法输出AVL  
{  
    if (b!=NULL)  
    {  
        printf("%d",b->key);  
        if (b->lchild!=NULL || b->rchild!=NULL)  
        {  
            printf("(");  
            DispBSTree(b->lchild);  
            if (b->rchild!=NULL) printf(",");  
            DispBSTree(b->rchild);  
            printf(")");  
        }  
    }  
}  
void LeftProcess1(BSTNode *&p,int &taller)  //在删除结点时进行左处理  
{  
    BSTNode *p1,*p2;  
    if (p->bf==1)  
    {  
        p->bf=0;  
        taller=1;  
    }  
    else if (p->bf==0)  
    {  
        p->bf=-1;  
        taller=0;  
    }  
    else        //p->bf=-1  
    {  
        p1=p->rchild;  
        if (p1->bf==0)          //需作RR调整  
        {  
            p->rchild=p1->lchild;  
            p1->lchild=p;  
            p1->bf=1;  
            p->bf=-1;  
            p=p1;  
            taller=0;  
        }  
        else if (p1->bf==-1)    //需作RR调整  
        {  
            p->rchild=p1->lchild;  
            p1->lchild=p;  
            p->bf=p1->bf=0;  
            p=p1;  
            taller=1;  
        }  
        else                    //需作RL调整  
        {  
            p2=p1->lchild;  
            p1->lchild=p2->rchild;  
            p2->rchild=p1;  
            p->rchild=p2->lchild;  
            p2->lchild=p;  
            if (p2->bf==0)  
            {  
                p->bf=0;  
                p1->bf=0;  
            }  
            else if (p2->bf==-1)  
            {  
                p->bf=1;  
                p1->bf=0;  
            }  
            else  
            {  
                p->bf=0;  
                p1->bf=-1;  
            }  
            p2->bf=0;  
            p=p2;  
            taller=1;  
        }  
    }  
}  
void RightProcess1(BSTNode *&p,int &taller) //在删除结点时进行右处理  
{  
    BSTNode *p1,*p2;  
    if (p->bf==-1)  
    {  
        p->bf=0;  
        taller=-1;  
    }  
    else if (p->bf==0)  
    {  
        p->bf=1;  
        taller=0;  
    }  
    else        //p->bf=1  
    {  
        p1=p->lchild;  
        if (p1->bf==0)          //需作LL调整  
        {  
            p->lchild=p1->rchild;  
            p1->rchild=p;  
            p1->bf=-1;  
            p->bf=1;  
            p=p1;  
            taller=0;  
        }  
        else if (p1->bf==1)     //需作LL调整  
        {  
            p->lchild=p1->rchild;  
            p1->rchild=p;  
            p->bf=p1->bf=0;  
            p=p1;  
            taller=1;  
        }  
        else                    //需作LR调整  
        {  
            p2=p1->rchild;  
            p1->rchild=p2->lchild;  
            p2->lchild=p1;  
            p->lchild=p2->rchild;  
            p2->rchild=p;  
            if (p2->bf==0)  
            {  
                p->bf=0;  
                p1->bf=0;  
            }  
            else if (p2->bf==1)  
            {  
                p->bf=-1;  
                p1->bf=0;  
            }  
            else  
            {  
                p->bf=0;  
                p1->bf=1;  
            }  
            p2->bf=0;  
            p=p2;  
            taller=1;  
        }  
    }  
}  
void Delete2(BSTNode *q,BSTNode *&r,int &taller)  
//由DeleteAVL()调用,用于处理被删结点左右子树均不空的情况  
{  
    if (r->rchild==NULL)  
    {  
        q->key=r->key;  
        q=r;  
        r=r->lchild;  
        free(q);  
        taller=1;  
    }  
    else  
    {  
        Delete2(q,r->rchild,taller);  
        if (taller==1)  
            RightProcess1(r,taller);  
    }  
}  
int DeleteAVL(BSTNode *&p,KeyType x,int &taller) //在AVL树p中删除关键字为x的结点  
{  
    int k;  
    BSTNode *q;  
    if (p==NULL)  
        return 0;  
    else if (x<p->key)  
    {  
        k=DeleteAVL(p->lchild,x,taller);  
        if (taller==1)  
            LeftProcess1(p,taller);  
        return k;  
    }  
    else if (x>p->key)  
    {  
        k=DeleteAVL(p->rchild,x,taller);  
        if (taller==1)  
            RightProcess1(p,taller);  
        return k;  
    }  
    else            //找到了关键字为x的结点,由p指向它  
    {  
        q=p;  
        if (p->rchild==NULL)        //被删结点右子树为空  
        {  
            p=p->lchild;  
            free(q);  
            taller=1;  
        }  
        else if (p->lchild==NULL)   //被删结点左子树为空  
        {  
            p=p->rchild;  
            free(q);  
            taller=1;  
        }  
        else                        //被删结点左右子树均不空  
        {  
            Delete2(q,q->lchild,taller);  
            if (taller==1)  
                LeftProcess1(q,taller);  
            p=q;  
        }  
        return 1;  
    }  
}  
int main()  
{  
    BSTNode *b=NULL;  
    int i,j,k;  
    KeyType a[]= {16,3,7,11,9,26,18,14,15},n=9; //例10.5  
    printf(" 创建一棵AVL树:\n");  
    for(i=0; i<n; i++)  
    {  
        printf("   第%d步,插入%d元素:",i+1,a[i]);  
        InsertAVL(b,a[i],j);  
        DispBSTree(b);  
        printf("\n");  
    }  
    printf("   AVL:");  
    DispBSTree(b);  
    printf("\n");  
    printf(" 删除结点:\n");                     //例10.6  
    k=11;  
    printf("   删除结点%d:",k);  
    DeleteAVL(b,k,j);  
    printf("   AVL:");  
    DispBSTree(b);  
    printf("\n");  
    k=9;  
    printf("   删除结点%d:",k);  
    DeleteAVL(b,k,j);  
    printf("   AVL:");  
    DispBSTree(b);  
    printf("\n");  
    k=15;  
    printf("   删除结点%d:",k);  
    DeleteAVL(b,k,j);  
    printf("   AVL:");  
    DispBSTree(b);  
    printf("\n\n");  
    return 0;  
}  
运行结果:


知识点总结。

验证平衡二叉树相关算法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值