第十四周项目1--验证算法--(4)平衡二叉树

问题及代码:

/*    
*烟台大学计算机与控制工程学院     
*作    者:刘倩    
*完成日期:2016年11月25日 
*问题描述:认真阅读并验证平衡二叉树相关算法。  
(1)由整数序列{43,52,75,24,10,38,67,55,63,60}构造AVL树;  
(2)输出用括号法表示的AVL树;  
(3)查找关键字55;  
 (4)分别删除43和55,输出删除后用括号法表示的二叉排序树。  
 
*/  


#include <stdio.h>    
#include <malloc.h> 
   #define MAXL 100  
typedef int KeyType;                    //定义关键字类型    
typedef char InfoType;    
typedef struct node                     //记录类型    
{    
    KeyType key;                        //关键字项    
    int bf;                             //平衡因子    
    InfoType data;                      //其他数据域    
    struct node *lchild,*rchild;        //左右孩子指针    
} BSTNode; 
typedef struct    
{    
    KeyType key;                //KeyType为关键字的数据类型    
    InfoType data;              //其他数据    
} NodeType;    
typedef NodeType SeqList[MAXL];     //顺序表类型  
int BinSearch1(SeqList R,int low,int high,KeyType k)    
{    
    int mid;    
    if (low<=high)      //查找区间存在一个及以上元素    
    {    
        mid=(low+high)/2;  //求中间位置    
        if (R[mid].key==k) //查找成功返回其逻辑序号mid+1    
            return mid+1;    
        if (R[mid].key>k)  //在R[low..mid-1]中递归查找    
            BinSearch1(R,low,mid-1,k);    
        else              //在R[mid+1..high]中递归查找    
            BinSearch1(R,mid+1,high,k);    
    }    
    else    
        return 0;    
}    
  
void LeftProcess(BSTNode *&p,int &taller)    
//对以指针p所指结点为根的二叉树作左平衡旋转处理,本算法结束时,指针p指向新的根结点    
{    
    BSTNode *p1,*p2;    
    if (p->bf==0)           //原本左、右子树等高,现因左子树增高而使树增高    
    {    
        p->bf=1;    
        taller=1;    
    }    
    else if (p->bf==-1)     //原本右子树比左子树高,现左、右子树等高    
    {    
        p->bf=0;    
        taller=0;    
    }    
    else                    //原本左子树比右子树高,需作左子树的平衡处理    
    {    
        p1=p->lchild;       //p指向*p的左子树根结点    
        if (p1->bf==1)      //新结点插入在*b的左孩子的左子树上,要作LL调整    
        {    
            p->lchild=p1->rchild;    
            p1->rchild=p;    
            p->bf=p1->bf=0;    
            p=p1;    
        }    
        else if (p1->bf==-1)    //新结点插入在*b的左孩子的右子树上,要作LR调整    
        {    
            p2=p1->rchild;    
            p1->rchild=p2->lchild;    
            p2->lchild=p1;    
            p->lchild=p2->rchild;    
            p2->rchild=p;    
            if (p2->bf==0)          //新结点插在*p2处作为叶子结点的情况    
                p->bf=p1->bf=0;    
            else if (p2->bf==1)     //新结点插在*p2的左子树上的情况    
            {    
                p1->bf=0;    
                p->bf=-1;    
            }    
            else                    //新结点插在*p2的右子树上的情况    
            {    
                p1->bf=1;    
                p->bf=0;    
            }    
            p=p2;    
            p->bf=0;            //仍将p指向新的根结点,并置其bf值为0    
        }    
        taller=0;    
    }    
}    
void RightProcess(BSTNode *&p,int &taller)    
//对以指针p所指结点为根的二叉树作右平衡旋转处理,本算法结束时,指针p指向新的根结点    
{    
    BSTNode *p1,*p2;    
    if (p->bf==0)           //原本左、右子树等高,现因右子树增高而使树增高    
    {    
        p->bf=-1;    
        taller=1;    
    }    
    else if (p->bf==1)      //原本左子树比右子树高,现左、右子树等高    
    {    
        p->bf=0;    
        taller=0;    
    }    
    else                    //原本右子树比左子树高,需作右子树的平衡处理    
    {    
        p1=p->rchild;       //p指向*p的右子树根结点    
        if (p1->bf==-1)     //新结点插入在*b的右孩子的右子树上,要作RR调整    
        {    
            p->rchild=p1->lchild;    
            p1->lchild=p;    
            p->bf=p1->bf=0;    
            p=p1;    
        }    
        else if (p1->bf==1) //新结点插入在*p的右孩子的左子树上,要作RL调整    
        {    
            p2=p1->lchild;    
            p1->lchild=p2->rchild;    
            p2->rchild=p1;    
            p->rchild=p2->lchild;    
            p2->lchild=p;    
            if (p2->bf==0)          //新结点插在*p2处作为叶子结点的情况    
                p->bf=p1->bf=0;    
            else if (p2->bf==-1)    //新结点插在*p2的右子树上的情况    
            {    
                p1->bf=0;    
                p->bf=1;    
            }    
            else                    //新结点插在*p2的左子树上的情况    
            {    
                p1->bf=-1;    
                p->bf=0;    
            }    
            p=p2;    
            p->bf=0;            //仍将p指向新的根结点,并置其bf值为0    
        }    
        taller=0;    
    }    
}    
int InsertAVL(BSTNode *&b,KeyType e,int &taller)    
/*若在平衡的二叉排序树b中不存在和e有相同关键字的结点,则插入一个  
  数据元素为e的新结点,并返回1,否则返回0。若因插入而使二叉排序树  
  失去平衡,则作平衡旋转处理,布尔变量taller反映b长高与否*/    
{    
    if(b==NULL)         //原为空树,插入新结点,树“长高”,置taller为1    
    {    
        b=(BSTNode *)malloc(sizeof(BSTNode));    
        b->key=e;    
        b->lchild=b->rchild=NULL;    
        b->bf=0;    
        taller=1;    
    }    
    else    
    {    
        if (e==b->key)              //树中已存在和e有相同关键字的结点则不再插入    
        {    
            taller=0;    
            return 0;    
        }    
        if (e<b->key)               //应继续在*b的左子树中进行搜索    
        {    
            if ((InsertAVL(b->lchild,e,taller))==0) //未插入    
                return 0;    
            if (taller==1)          //已插入到*b的左子树中且左子树“长高”    
                LeftProcess(b,taller);    
        }    
        else                        //应继续在*b的右子树中进行搜索    
        {    
            if ((InsertAVL(b->rchild,e,taller))==0) //未插入    
                return 0;    
            if (taller==1)          //已插入到b的右子树且右子树“长高”    
                RightProcess(b,taller);    
        }    
    }    
    return 1;    
}    
void DispBSTree(BSTNode *b) //以括号表示法输出AVL    
{    
    if (b!=NULL)    
    {    
        printf("%d",b->key);    
        if (b->lchild!=NULL || b->rchild!=NULL)    
        {    
            printf("(");    
            DispBSTree(b->lchild);    
            if (b->rchild!=NULL) printf(",");    
            DispBSTree(b->rchild);    
            printf(")");    
        }    
    }    
}    
void LeftProcess1(BSTNode *&p,int &taller)  //在删除结点时进行左处理    
{    
    BSTNode *p1,*p2;    
    if (p->bf==1)    
    {    
        p->bf=0;    
        taller=1;    
    }    
    else if (p->bf==0)    
    {    
        p->bf=-1;    
        taller=0;    
    }    
    else        //p->bf=-1    
    {    
        p1=p->rchild;    
        if (p1->bf==0)          //需作RR调整    
        {    
            p->rchild=p1->lchild;    
            p1->lchild=p;    
            p1->bf=1;    
            p->bf=-1;    
            p=p1;    
            taller=0;    
        }    
        else if (p1->bf==-1)    //需作RR调整    
        {    
            p->rchild=p1->lchild;    
            p1->lchild=p;    
            p->bf=p1->bf=0;    
            p=p1;    
            taller=1;    
        }    
        else                    //需作RL调整    
        {    
            p2=p1->lchild;    
            p1->lchild=p2->rchild;    
            p2->rchild=p1;    
            p->rchild=p2->lchild;    
            p2->lchild=p;    
            if (p2->bf==0)    
            {    
                p->bf=0;    
                p1->bf=0;    
            }    
            else if (p2->bf==-1)    
            {    
                p->bf=1;    
                p1->bf=0;    
            }    
            else    
            {    
                p->bf=0;    
                p1->bf=-1;    
            }    
            p2->bf=0;    
            p=p2;    
            taller=1;    
        }    
    }    
}    
void RightProcess1(BSTNode *&p,int &taller) //在删除结点时进行右处理    
{    
    BSTNode *p1,*p2;    
    if (p->bf==-1)    
    {    
        p->bf=0;    
        taller=-1;    
    }    
    else if (p->bf==0)    
    {    
        p->bf=1;    
        taller=0;    
    }    
    else        //p->bf=1    
    {    
        p1=p->lchild;    
        if (p1->bf==0)          //需作LL调整    
        {    
            p->lchild=p1->rchild;    
            p1->rchild=p;    
            p1->bf=-1;    
            p->bf=1;    
            p=p1;    
            taller=0;    
        }    
        else if (p1->bf==1)     //需作LL调整    
        {    
            p->lchild=p1->rchild;    
            p1->rchild=p;    
            p->bf=p1->bf=0;    
            p=p1;    
            taller=1;    
        }    
        else                    //需作LR调整    
        {    
            p2=p1->rchild;    
            p1->rchild=p2->lchild;    
            p2->lchild=p1;    
            p->lchild=p2->rchild;    
            p2->rchild=p;    
            if (p2->bf==0)    
            {    
                p->bf=0;    
                p1->bf=0;    
            }    
            else if (p2->bf==1)    
            {    
                p->bf=-1;    
                p1->bf=0;    
            }    
            else    
            {    
                p->bf=0;    
                p1->bf=1;    
            }    
            p2->bf=0;    
            p=p2;    
            taller=1;    
        }    
    }    
}    
void Delete2(BSTNode *q,BSTNode *&r,int &taller)    
//由DeleteAVL()调用,用于处理被删结点左右子树均不空的情况    
{    
    if (r->rchild==NULL)    
    {    
        q->key=r->key;    
        q=r;    
        r=r->lchild;    
        free(q);    
        taller=1;    
    }    
    else    
    {    
        Delete2(q,r->rchild,taller);    
        if (taller==1)    
            RightProcess1(r,taller);    
    }    
}    
int DeleteAVL(BSTNode *&p,KeyType x,int &taller) //在AVL树p中删除关键字为x的结点    
{    
    int k;    
    BSTNode *q;    
    if (p==NULL)    
        return 0;    
    else if (x<p->key)    
    {    
        k=DeleteAVL(p->lchild,x,taller);    
        if (taller==1)    
            LeftProcess1(p,taller);    
        return k;    
    }    
    else if (x>p->key)    
    {    
        k=DeleteAVL(p->rchild,x,taller);    
        if (taller==1)    
            RightProcess1(p,taller);    
        return k;    
    }    
    else            //找到了关键字为x的结点,由p指向它    
    {    
        q=p;    
        if (p->rchild==NULL)        //被删结点右子树为空    
        {    
            p=p->lchild;    
            free(q);    
            taller=1;    
        }    
        else if (p->lchild==NULL)   //被删结点左子树为空    
        {    
            p=p->rchild;    
            free(q);    
            taller=1;    
        }    
        else                        //被删结点左右子树均不空    
        {    
            Delete2(q,q->lchild,taller);    
            if (taller==1)    
                LeftProcess1(q,taller);    
            p=q;    
        }    
        return 1;    
    }    
}    
int main()    
{    
    BSTNode *b=NULL;    
    int i,j,k;    
    KeyType a[]= {43,52,75,24,10,38,67,55,63,60},n=10,x=55;    
    printf(" 创建一棵AVL树:\n");    
    for(i=0; i<n; i++)    
    {    
        printf("   第%d步,插入%d元素:",i+1,a[i]);    
        InsertAVL(b,a[i],j);    
        DispBSTree(b);    
        printf("\n");    
    }   
    printf("   AVL:");    
    DispBSTree(b);    
    printf("\n"); 
	  
    int result;    
    SeqList R;   
	for (i=0; i<n; i++)    
        R[i].key=a[i];    
    result = BinSearch1(R,0,n-1,x);    
    if(result>0)    
        printf("序列中第 %d 个是 %d\n",result, x);    
    else    
        printf("木有找到!\n");    
    printf(" 删除结点:\n");    
    k=43;  
    printf("   删除结点%d:",k);    
    DeleteAVL(b,k,j);    
    printf("   AVL:");    
    DispBSTree(b);    
    printf("\n");    
    k=55;    
    printf("   删除结点%d:",k);    
    DeleteAVL(b,k,j);    
    printf("   AVL:");    
    DispBSTree(b);    
    printf("\n\n");    
    return 0;    
}  

 运行结果:

知识点总结:
平衡二叉树的基本运算
学习心得:
主要是平衡二叉树的调整方法,多画图


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值