最短路径算法--无权最短路径

本文介绍了无权最短路径问题,讨论了在赋权图中寻找单源最短路径的算法。通过广度优先搜索(BFS)方法解决无权图的最短路径问题,并提供了伪代码展示算法过程,其时间复杂度为O(|E|+|V|)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

  输入是一个赋权图:与每条边(vi,vj)相联系的是穿越该弧的代价(或称为值)ci,j。一条路径v1v2v3…vN的值是,叫做赋权路径长(weighted path length),而无权路径长(unweighted path length)只是路径上的边数,即N-1。


单源路径问题

  给定一个赋权图G=(V,E)和一个特定顶点s作为输入,找出从s到G中每一个其它顶点的最短赋权路径。

  负值圈(negative-cost cycle):带圈图中圈中的权值有为负值。当它出现在图中时,最短路径问题就是不确定的。


无权最短路径

下图是一个无权图G,使用某个顶点s作为输入参数,我们想要找出从s到所有其它顶点的最短路径。我们只对包含在路径中的边数有兴趣,因此在边上不存在权。显然,这是赋权最短路径问题的特殊情形,因为我们可以为所有的边都赋以权1。一个无权有向图G:


<
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值