leetcode Unique Paths II

548人阅读 评论(0)

Unique Paths II

Total Accepted: 2092 Total Submissions: 8049

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
[0,0,0],
[0,1,0],
[0,0,0]
]


The total number of unique paths is 2.

Note: m and n will be at most 100.

I actually submitted the code with TLE using DFS. DP is the right solution:

class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size(), n = m == 0 ? 0 : obstacleGrid[0].size(), count = 0;
if (m == 0 || n == 0)
return count;
vector<vector<int>> dp(m, vector<int>(n, 0));
int i, j;
if (obstacleGrid[0][0] == 1)
return 0;
else
dp[0][0] = 1;
for (j = 1; j < n; ++j)
dp[0][j] = dp[0][j - 1] & (obstacleGrid[0][j] == 0);
for (i = 1; i < m; ++i)
dp[i][0] = dp[i - 1][0] & (obstacleGrid[i][0] == 0);

for (i = 1; i < m; ++i)
for (j = 1; j < n; ++j)
if (obstacleGrid[i][j] == 0)
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
else
dp[i][j] = 0;
return dp[m - 1][n - 1];

}
};

3
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：264761次
• 积分：4527
• 等级：
• 排名：第6496名
• 原创：152篇
• 转载：233篇
• 译文：0篇
• 评论：6条
文章分类
阅读排行
评论排行
最新评论