Reproducible scaling laws for contrastive language-image learning

这篇scaling laws横轴是GMAC per sample x samples seen,“GMAC” 是"Giga Multiply-Accumulate" 的缩写,这是计算机部件/系统所能执行的运算量的一种度量方式。一次 “multiply-accumulate” (乘累加) 操作包括一个乘法和一个累加操作。“Giga” 是表示10^9,也就是十亿的前缀。所以,一Giga MAC (GMAC) 可以表示一部分硬件在一秒内可以执行十亿次乘累加操作。

GMAC可以由thop包中的profile来统计

from thop import profile
input = torch.randn(1, 3, 224, 224)  # 这只是一个例子,你可能需要根据你模型的输入尺寸来更改

# 下面这行假设 model 是加载有所需参数的模型
macs, params = profile(model, inputs=(input, ))

gmacs = macs / (10**9)  # 转换为Giga MACs
gmacs_per_sample = gmacs / input.size(0)  # 计算每个样本的 Giga MACs

整个论文中的scaling law是通过from scratch来验证的,Open CLIP有weights但是没有数据,OpenCLIP有数据,同时论文中用了LAION 5B的数据
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值