对角矩阵的性质(diagonal matrix)

对角矩阵英语:diagonal matrix)是一个主对角线之外的元素皆为0的矩阵。对角线上的元素可以为0或其他值。因此n行n列的矩阵{\displaystyle \mathbf {D} }\mathbf {D} = (di,j)若符合以下的性质:

{\displaystyle d_{i,j}=0{\mbox{ if }}i\neq j\qquad \forall i,j\in \{1,2,\ldots ,n\}}d_{i,j} = 0 \mbox{ if } i \ne j  \qquad \forall i,j \in    \{1, 2, \ldots, n\}

则矩阵{\displaystyle \mathbf {D} }\mathbf {D}为对角矩阵。

例子[编辑]

{\displaystyle {\begin{pmatrix}a&0&0\\0&b&0\\0&0&c\end{pmatrix}},{\begin{pmatrix}1&0&0\\0&2&0\\0&0&0\end{pmatrix}},{\begin{pmatrix}1&0\\0&7\end{pmatrix}},{\begin{pmatrix}2\end{pmatrix}}}\begin{pmatrix} a & 0 & 0 \\0 & b & 0 \\0 & 0 & c \end{pmatrix},\begin{pmatrix} 1 & 0 & 0 \\0 & 2 & 0 \\0 & 0 & 0 \end{pmatrix},\begin{pmatrix} 1 & 0 \\0 & 7\end{pmatrix},\begin{pmatrix} 2\end{pmatrix}

均为对角矩阵

矩阵运算[编辑]

加法

{\displaystyle {\begin{bmatrix}a_{1}&&&\\&a_{2}&&\\&&\ddots &\\&&&a_{n}\end{bmatrix}}+{\begin{bmatrix}b_{1}&&&\\&b_{2}&&\\&&\ddots &\\&&&b_{n}\end{bmatrix}}={\begin{bmatrix}a_{1}+b_{1}&&&\\&a_{2}+b_{2}&&\\&&\ddots &\\&&&a_{n}+b_{n}\end{bmatrix}}}{\begin{bmatrix}a_{1}&&&\\&a_{2}&&\\&&\ddots &\\&&&a_{n}\end{bmatrix}}+{\begin{bmatrix}b_{1}&&&\\&b_{2}&&\\&&\ddots &\\&&&b_{n}\end{bmatrix}}={\begin{bmatrix}a_{1}+b_{1}&&&\\&a_{2}+b_{2}&&\\&&\ddots &\\&&&a_{n}+b_{n}\end{bmatrix}}

乘法

{\displaystyle {\begin{bmatrix}a_{1}&&&\\&a_{2}&&\\&&\ddots &\\&&&a_{n}\end{bmatrix}}{\begin{bmatrix}b_{1}&&&\\&b_{2}&&\\&&\ddots &\\&&&b_{n}\end{bmatrix}}={\begin{bmatrix}a_{1}b_{1}&&&\\&a_{2}b_{2}&&\\&&\ddots &\\&&&a_{n}b_{n}\end{bmatrix}}}{\begin{bmatrix}a_{1}&&&\\&a_{2}&&\\&&\ddots &\\&&&a_{n}\end{bmatrix}}{\begin{bmatrix}b_{1}&&&\\&b_{2}&&\\&&\ddots &\\&&&b_{n}\end{bmatrix}}={\begin{bmatrix}a_{1}b_{1}&&&\\&a_{2}b_{2}&&\\&&\ddots &\\&&&a_{n}b_{n}\end{bmatrix}}

逆矩阵

{\displaystyle {\begin{bmatrix}a_{1}&&&\\&a_{2}&&\\&&\ddots &\\&&&a_{n}\end{bmatrix}}^{-1}={\begin{bmatrix}a_{1}^{-1}&&&\\&a_{2}^{-1}&&\\&&\ddots &\\&&&a_{n}^{-1}\end{bmatrix}}}{\begin{bmatrix}a_{1}&&&\\&a_{2}&&\\&&\ddots &\\&&&a_{n}\end{bmatrix}}^{{-1}}={\begin{bmatrix}a_{1}^{{-1}}&&&\\&a_{2}^{{-1}}&&\\&&\ddots &\\&&&a_{n}^{{-1}}\end{bmatrix}} 当且仅当 {\displaystyle a_{1},a_{2},\cdots ,a_{n}}a_{1},a_{2},\cdots ,a_{n} 均不为零。

性质[编辑]

  • 对角矩阵都是对称矩阵
  • 对角矩阵是上三角矩阵下三角矩阵
  • 单位矩阵In零矩阵恒为对角矩阵。一维的矩阵也恒为对角矩阵。
  • 一个对角线上元素皆相等的对角矩阵是数乘矩阵,可表示为单位矩阵及一个系数λ的乘积:λI
  • 一对角矩阵 diag(a1, ..., an) 的特征值a1, ..., an。而其特征向量单位向量 e1, ..., en
  • 一对角矩阵 diag(a1, ..., an) 的行列式a1...an的乘积。
  • 矩阵 A 左乘一个对角矩阵 D,是分别用 D 的对角线元素分别作用于矩阵 A 的每一行;
  • 相似地,矩阵 A 右乘一个对角矩阵 D,是分别将 D 的对角线元素分别作用于矩阵 A 的每一列
  • 对角矩阵之间的矩阵乘法运算,对角线元素相乘,仍为对角矩阵,自然此时满足乘法的交换律;

方阵与对角矩阵相似的充分必要条件[编辑]

{\displaystyle n}n阶方阵可进行对角化的充分必要条件是:

  • {\displaystyle n}n阶方阵存在{\displaystyle n}n个线性无关的特征向量
    • 推论:如果这个{\displaystyle n}n阶方阵有{\displaystyle n}n阶个不同的特征值,那么矩阵必然存在相似矩阵

  • 如果{\displaystyle n}n阶方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重复次数


From https://zh.wikipedia.org/wiki/%E5%B0%8D%E8%A7%92%E7%9F%A9%E9%99%A3

展开阅读全文

没有更多推荐了,返回首页