Storm实时大数据处理(一)

本文介绍了大数据实时处理架构Storm,对比了与Hadoop的区别。Storm通过Spout发送数据,Bolt进行实时处理,两者之间通过Stream传输数据。文章用生动的故事解释了Storm的工作原理,其中Spout类似龙王发射数据,Bolt如同雷电快速处理数据,Nimbus负责任务分发,Zookeeper进行集群管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自从Google发表了3篇举世瞩目的论文(Google File System、BigTable和MapReduce)以后,大数据被引爆了。如果说计算机的威力相当于一枚大炮的威力的话,那么互联网的威力相当于一颗原子弹,而大数据的威力则相当于氢弹,大数据成为了IT发展史上的又一次浪潮,处于这个圈内的我们怎能错过?

时至今日,基于Google的3篇论文及后续研究,大数据处理架构如雨后春笋般拔地而起,大数据的世界里,百家争鸣,百花齐放(关注Apache大数据开源项目的朋友应该有感触),这一点就像春秋战国时期思想界一样,大家都基于《易经》,却各有各的理解,各有各的用途。在大数据分布式处理的世界里,Hadoop是鼻祖,而基于Hadoop,又诞生出了很多框架,HBase、Hive、Pig、Zookeeper、Spark、Storm等,读者可以去Apache项目列表里面看详细信息:Apache Projects Directory,本文介绍的是实时大数据处理架构Storm。

Hadoop做大数据处理,做的是批处理,即在处理之前需要先准备好数据,有点万事俱备只欠东风的感觉,而Storm做的是实时大数据处理,在处理前不需要准备好数据。举个例子,想象一个无比庞大蓄水池,连接着无数多的进水管,如果把蓄水池和管道里面的水看成数据的话,那么Hadoop擅长于处理蓄水池中已经累计的海量数据,而Storm擅长于处理实时流进蓄水池的管道里的数据。

大数据的一大特征是高速度,因此大数据的实时处理更具有商业价值,实时的商品推荐,实时的搜索推荐,等等,都要求对大数据的高速、实时处理,而Storm就擅长于这个。本文,我介绍一下Storm的基本概念,关于St

Apace实时历史数据库ApaceRDB是长沙软动信息科技有限公司自主研发的套基于分布式事务型的通用实时数据库系统,它可以应用于现代工业企业,包括电力、石油、矿山、化工、钢铁、电信、航空等领域,为这些行业的SIS监控系统、仿真系统等提供数据保障。 Apace实时历史数据库Apace提供对实时时序数据的压缩、计算、存储、告警、分发、查询、统计功能,同时,为上层业务系统开发提供了丰富的应用接口,包括组态设计器以及Excel扩展报表插件。 Apace实时历史数据库系统引入了多种创新的技术和理念,各方面的指标在同类软件中都名列前茅。在实时数据采集方面,Apace可以在台普通服务器上稳定的承载百万点的数据同步更新;在历史数据处理方面,在对多种压缩算法进行研究改进后,创造了Apace独有的魔方无损压缩算法,1万点1年的历史数据仅需5.8GB的空间。同时,Apace独创的索引技术,可以实现检索的时间无关性,即可以从几十、上百年的历史数据中高效的检索任时间点的数据;在告警服务里,Apace首度提出了趋势拟合和波动拟合告警,这项技术让Apace的告警能力得到了质的飞跃,可实现更为复杂的告警规则;在计算服务方面,计算规则可以采用C#、VB.NET或JScript语言进行编写,支持程序集动态引用技术,算法设计者可以使用自定义的第三方程序集(如VC动态链接库),强化了计算服务的计算能力。 Apace实时历史数据库Apace组态图设计器,可以轻松的设计出仿真式组态图、趋势图、报表等各种所需的组态图,Apace已经为用户提供了20多种基础元件,除了这些基础元件以外,用户还可以根据行业的需要来自定义新的元件;组态图支持客户端脚本编码,可对图中各个元件进行编码控制。在设计过程中,可以随时对组态图进行预览,以查看实际效果,设计完成后通过内置的发布功能,可随时发布到指定的服务器上以供使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值