自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

庄小焱

博主在支付交易领域,信贷金融领域深耕,我在博客中分享业务、技术、产品相关知识,欢迎大家和我交流学习。

  • 博客(1114)
  • 收藏
  • 关注

原创 庄小焱——博主个人介绍

我是庄小焱。曾任职于阿里巴巴,PMP项目管理专家、系统架构设计师(高级)、CSDN博文专家。 博主在支付交易领域,信贷金融领域深耕,我在博客中分享业务、技术、产品相关知识,欢迎大家和我交流学习。

2020-07-02 11:44:35 2194 2

原创 大数据存储域——Kafka实战经验总结

本文总结了 Kafka 的实战经验,重点探讨了 Kafka 的分区副本机制、ISR 与非 ISR 节点的概念及作用、Leader 选举流程以及与 ZooKeeper 的关系等内容,旨在帮助读者深入理解 Kafka 的工作原理和高可用性保障机制,提升在大数据存储域中使用 Kafka 的能力。

2025-09-09 22:54:40 771

原创 大数据存储域——Kafka设计原理

本文主要介绍了Kafka的架构原理、消息订阅模式以及在金融风控等领域的应用。Kafka作为数据中转站,可同步不同系统数据,支持事件驱动架构,广泛应用于金融支付与风控场景。其架构包括Producer、Broker、Topic、Partition、Replication、Message、Consumer和Consumer Group等组件,依赖Zookeeper保存元信息。Kafka的消息订阅模式包括点对点、发布-订阅、分区级订阅、静态订阅和动态订阅等,每种模式都有其特点和适用场景。此外,还探讨了Kafka与R

2025-09-09 21:41:16 975

原创 支付域——清结算域体系

本文深入探讨了支付域中的清结算概念,从清算、结算到清结算的本质、运营主体、职责、资金属性及所需资质等维度进行详细辨析。通过举例和类比生活场景,清晰阐释了三者的区别与联系。同时,对清结算域的体系、模式、相关方及场景进行了全面梳理,提出了金融和企业支付结算的差异性思考,为理解支付域中的清结算业务提供了系统性框架。

2025-09-07 11:08:08 159

原创 支付域——跨境支付(Alipay/Wechat)

本文深入探讨了全球跨境支付的背景、网络设计与合规设计,以及支付宝和微信支付的跨境支付体系。全球化与数字经济推动跨境支付需求激增,但传统体系存在效率低、成本高、合规复杂等问题。新兴技术如区块链和数字货币正在重塑跨境支付格局,各国也在探索构建自主跨境支付体系。支付宝和微信支付通过技术创新和网络拓展,正在改变跨境支付的生态。

2025-09-06 15:06:52 170

原创 支付域——支付与交易概念

本文详细阐述了支付域中支付与交易的核心概念及其相互关系。交易是商品或服务交换的过程,包含多个要素并产生订单或合同。支付则是资金流转的过程,是交易的资金结算环节。支付交易结合了两者,根据不同场景提供多样化的支付产品和服务。文中还探讨了支付过程、支付资金、支付场景、支付产品等多个方面,并分析了支付与交易在不同维度上的关联,强调了支付信息流中信息流、支付流和资金流的重要性。

2025-09-04 22:32:55 124

原创 信贷模型域——申请评分卡模型

本文主要介绍了信贷模型域中的申请评分卡模型。首先阐述了信用违约风险的概念、典型场景、分类以及衡量与管理方法。接着详细介绍了申请评分卡的重要性、定义、特征、现实应用场景以及流程。然后深入探讨了申请评分卡模型的入参问题,包括非平衡样本问题。在特征工程方面,详细讲解了构建信用风险类型的特征、特征的分箱、WOE编码、特征信息度的计算以及单变量/多变量分析。在模型算法选择上,介绍了逻辑回归、决策树及其扩展、随机森林/GBDT/XGBoost、神经网络等常见算法。最后,阐述了申请评分卡模型的评价标准,包括模型的区分度、

2025-08-30 09:37:08 173

原创 信贷模型域——清收阶段模型(贷后模型)

本文深入探讨了信贷模型域中的清收阶段模型(贷后模型),涵盖早期催收模型(C卡)、晚期催收模型、Best Time to Contact模型和回收模型。这些模型通过多维度数据输入,运用分类、回归和生存分析等建模方法,输出关键指标如还款概率、回收率等,广泛应用于银行、资产管理公司和催收外包公司,助力提升回款率、优化资源分配、降低催收成本,并融入贷后风控体系。

2025-08-25 23:49:11 136

原创 大数据治理域——离线数据开发

文本主要介绍了离线数据开发相关内容,包括业务与流程、阿里MaxCompute系统设计以及阿里调度系统设计。离线数据开发是大数据开发核心组成部分,用于处理批量数据,支持企业多种需求,其流程涵盖需求调研、数据源接入等环节。阿里MaxCompute系统架构与特点被阐述,调度系统背景及核心设计模型也进行了说明。

2025-08-25 23:21:47 907

原创 信贷策略域——信贷产品策略设计

本文主要探讨了信贷策略域中的信贷产品策略设计,涵盖了信贷产品生命周期管理、个人消费信贷产品设计、小企业经营性信贷产品设计以及中小企业供应链信贷产品设计等内容。文章详细阐述了信贷产品生命周期的四个阶段及其特点,并针对不同阶段的产品提出了相应的措施建议。在小企业经营性信贷产品设计部分,重点介绍了模型构建、指标设计、策略设计以及授信审批框架与流程,强调了通过多种数据衡量小微客户收入的重要性以及小企业经营性贷款模型在控制信贷风险、提升审批通过率方面的作用。

2025-08-24 21:02:39 459

原创 风控域——美团点评业务风控系统设计

美团点评业务风控系统设计文章主要探讨了美团在业务快速发展过程中,如何应对复杂多变的风控挑战。文章详细介绍了风控系统的全景,包括高效的规则引擎设计、风控域的挑战与解决方案,以及未来发展方向和美团在风控方面的深入思考。通过不断优化系统架构和产品功能,美团致力于实现高聚合架构上的低耦合,平衡系统复杂度与业务需求,并通过“防呆”设计降低风险。

2025-08-24 15:27:23 2012

原创 信贷模型域——客户管理阶段模型(贷中模型)

本文主要探讨了信贷模型域中的客户管理阶段模型,重点聚焦于交叉销售模型。交叉销售模型不仅应用于贷中阶段,还贯穿于贷前、贷中、贷后全过程,其核心作用在于提升客户价值、增强客户粘性、降低流失率以及实现风险与收益的平衡。文中通过具体案例展示了交叉销售模型在现实业务中的应用,并指出其在贷中阶段的主要任务是提升存量客户价值、增加产品使用率,同时有效控制风险。

2025-08-24 14:48:59 1033

原创 信贷模型域——催收电联模型实战

本文主要介绍了信贷催收电联模型的实践过程。从催收业务背景出发,阐述了催收行业的现状、法律政策影响、技术推动、社会争议以及面临的挑战和未来趋势。随后详细介绍了催收方案的设计,重点聚焦于基于机器学习的电联模型实践,包括数据分析与客户分群、特征加工与选取、模型选择对比、训练效果评估以及线上AB测试等关键环节。通过这些步骤,实现了从数据到模型再到落地的完整闭环,旨在持续提升催收效率。此外,还探讨了催收电联模型相关问题,如客户分类、数据来源、特征加工、模型学习起点、优化迭代、上线流程以及关键注意事项等。

2025-08-24 10:37:34 540

原创 信贷模型域——信贷准入与的授信模型(贷前模型)

本文主要介绍了信贷模型域中的贷前模型,包括申请评分模型(A卡)、申请欺诈模型(F卡)和初始额度辅助策略模型(L卡)。A卡用于评估信用违约风险,F卡着重识别欺诈风险,L卡则负责在客户获批后给出合理授信额度建议。这些模型在信贷风控流程中依次发挥作用,通过不同输入特征、建模方法和决策方式,实现风险控制与客户体验的平衡。

2025-08-24 09:40:32 796

原创 信贷模型域——信贷获客模型(获客模型)

本文深入探讨了信贷模型域中的信贷获客模型,包括风险预筛选模型、响应模型和渠道分析模型。风险预筛选模型在用户进入完整风控流程前快速拦截高风险申请,降低成本、提升效率并降低风险敞口。响应模型预测潜在用户对营销触达的积极响应概率,优化营销资源分配,提高转化率并降低成本。渠道分析模型衡量不同获客渠道的质量、成本、转化率和风险表现,帮助信贷公司找到高质量、低风险、成本可控的渠道,并对投放和流量分配进行优化。

2025-08-23 21:30:33 1548

原创 定时任务——ElasticJob原理

文章主要介绍了ElasticJob的原理和源码解析。ElasticJob是一个分布式任务调度框架,使用Zookeeper作为协调器,支持任务分片和分布式锁机制。文章还探讨了ElasticJob的作业流程、任务分配、Leader选举、任务触发和执行机制,以及如何在Spring Boot中使用ElasticJob。

2025-08-23 10:32:36 1110

原创 支付域——支付计费系统设计

本文深入探讨了支付计费系统的设计与管理。支付计费系统因行业多通道支付发展、商业模式驱动和合规监管需求而产生,其核心目标是自动化、灵活化地完成费用计算与分润,提升透明度和效率。系统设计涉及计费因子、计价方式、计费模型、计费公式、结算规则等多个方面,需满足商户计费、用户计费、渠道计费等多种场景需求。计费规则管理包括银行协议与接口、计费规则条目、划付与划付规则等。计费业务全流程涵盖支付订单生成、计费系统计算、清结算系统处理等环节。支付计费系统与信贷利率计算服务虽有相似之处,但在业务模型、规则来源、计算结果等方面存

2025-08-17 15:48:35 253

原创 支付域——支付路由引擎设计

本文深入探讨了支付路由引擎的设计与管理。支付路由引擎作为支付通道智能选择和路由的中枢系统,根据多种因素选择最优支付通道。其应用场景广泛,包括跨境支付、多渠道支付、高并发支付场景等。支付路由引擎的作用涵盖通道选择、成本优化、成功率优化等多个方面。文章还详细介绍了支付路由的分类、模型设计、核心设计以及技术实现等内容,旨在提升支付系统的灵活性与可扩展性。

2025-08-17 00:16:45 186

原创 系统设计——DDD领域模型驱动实践

本文主要介绍了DDD(领域驱动设计)在系统设计中的实践应用,包括其在编码规范、分层架构设计等方面的具体要求和建议。重点强调了应用层的命名规范,如避免使用模糊的Handler、Processor等命名,推荐使用动词加业务动作的清晰命名方式;区分命令和查询服务的命名规则;以及Repository层和防腐层的设计原则。此外,还探讨了DDD的价值和在实际系统中的应用思考。

2025-08-14 23:04:18 785

原创 支付域——账户系统设计

本文详细介绍了支付域中的账户系统设计,包括账户的定义、核心特征、常见类型以及在支付系统中的作用。账户是支付平台为用户、商户等主体建立的资金记录单元,具有资金归属、余额管理、交易流水、资金安全等核心特征。常见账户类型包括用户账户、商户账户、平台账户、保证金账户等。此外,还探讨了账户与银行账户的区别、账户的结构设计、如何设计账户类型以及账户系统设计等内容。

2025-08-14 22:56:31 655

原创 Spring——Spring懒加载设计使用场景

本文主要探讨了Spring框架中懒加载机制的设计使用场景。首先解释了懒加载的定义,然后对比了懒加载和初始化加载的区别,包括初始化时机、启动速度、运行性能、资源占用、典型应用场景和实现方式等方面。接着分析了懒加载与启动时初始化在不同维度的对比,如启动时间、首次访问性能、系统运行稳定性、资源占用、复杂度和开发体验等,并给出了在后端风控系统中的建议实践,包括不同组件类型的推荐加载方式及原因。最后针对风控场景提出了使用建议。

2025-08-09 15:15:28 789

原创 大数据存储域——Hive数据仓库工具

Hive是一个构建在Hadoop之上的数据仓库工具,本质上是SQL到MapReduce的转换器,适合海量数据的批处理查询。与传统数据库相比,它存储在HDFS上,计算执行依赖MapReduce等,不支持实时操作和完整事务。其架构包括JDBC/ODBC接口、Thrift Server、Web界面、命令行界面、驱动器、解析器、任务计划器、元数据存储、执行器、优化器等组件。Hive的元数据存储可选择外部数据库(推荐MySQL/PostgreSQL)或本地嵌入式数据库。执行引擎可选MapReduce、Tez、Spar

2025-08-06 23:37:49 750 1

原创 大数据存储域——HDFS存储系统

本文介绍了HDFS存储系统,包括其组件、工作机制、实战经验总结、使用场景以及与SpringBoot的实战示例和优化设计。HDFS由Client、NameNode、SecondaryNameNode、DataNode等组件构成,通过特定的工作机制实现文件的读取和写入。它适用于多种场景,如日志采集、大数据离线分析等,但也有不适用的场景。文中还展示了如何在SpringBoot项目中使用HDFS,包括引入依赖、配置文件、配置类、操作服务类和控制器层的实现。最后探讨了HDFS的优化设计。

2025-08-06 21:50:08 879

原创 【离线数仓项目】——任务调度与数据可视化实战

本文主要围绕离线数仓项目中的任务调度与数据可视化实战展开,介绍了业务流程虚拟节点、离线数仓任务调度、数据可视化等方面的内容,涉及DataWorks和QuickBI等工具的使用,并提供了相关的博文参考和项目实战域信息。

2025-07-13 00:41:16 462

原创 【离线数仓项目】——电商域ADS层开发实战

本文主要介绍了电商域离线数仓项目中ADS层的开发实战。首先阐述了ADS层的定义、作用、设计特征及示例,接着详细介绍了ADS层的设计规范,包括命名、表结构、分区与性能、数据一致性与可追溯性、适配下游场景、数据质量保障、安全与权限管理以及表生命周期与归档规范。随后介绍了ADS层的采集策略及示例,包括聚合汇总、指标派生、多主题整合、特征抽取、实时流处理、维表补充、报表定制和分层输出策略。接着通过实战示例展示了ADS层数据集市与主题、数据模型、数据导入、任务调度和表关联管理的具体操作。最后对ADS层进行了深入思考。

2025-07-13 00:35:43 434

原创 【离线数仓项目】——数据模型开发实战

本文主要介绍了电商业务背景下的离线数据仓库项目,包括业务域划分、核心业务域、业务核心流程以及电商业务数据模型。详细阐述了如何基于业务职能和数据主体进行业务域划分,如用户域、交易域等,并列举了电商核心业务域的主题域及其特点和实例。同时,对支付业务数据模型中的各类表进行了详细说明,如订单相关表、支付相关表等。最后,还介绍了电商数仓业系统方案设计以及DataWorks实战操作的各个步骤。

2025-07-12 23:58:44 684 2

原创 【离线数仓项目】——电商域DWS层开发实战

本文主要介绍了电商域离线数仓项目中DWS层的开发实战。DWS层是数据仓库中承接DWD明细层之上的汇总/主题/服务层,通过对明细数据的聚合、归类、计算和整合,形成面向分析和服务的业务主题数据表。文章详细阐述了DWS层的作用、设计特征、设计规范、采集策略以及实战示例,并对DWS层的数据思考进行了深入探讨,提出了建设建议。

2025-07-12 23:54:17 569

原创 【离线数仓项目】——电商域DWD层开发实战

本文主要介绍了离线数仓项目中电商域DWD层的开发实战。DWD层是数据仓库架构中的明细数据层,对ODS层的原始数据进行清洗、规范、整合与业务建模。它具有数据清洗、标准化、业务建模、整合、维度挂载等作用,常见设计特征包括一致性、明细级建模、保留历史记录等。文中还给出了交易支付场景下的DWD层表示例,以及DWD层设计规范、采集策略、实战示例和数据思考等内容。

2025-07-12 23:08:19 923

原创 【离线数仓项目】——电商域DIM层开发实战

本文主要介绍了电商域离线数仓项目中DIM层的开发实战。首先阐述了DIM层的简介、作用、设计特征、典型维度分类以及交易支付场景下的表示例和客户维度表设计。接着介绍了DIM层设计规范,包括表结构设计规范、数据处理规范以及常见要求规范。然后详细讲解了DIM层的采集策略,包括全量采集、增量采集、拉链采集、慢变维采集和外部字典加载等。最后通过实战示例,展示了DIM层维度建模、数据同步、任务调度、拉链表同步以及表关联管理的过程,并对DIM层与ODS层进行了对比总结,探讨了DIM层的典型应用场景。

2025-07-12 22:08:26 1701

原创 【离线数仓项目】——数据同步策略实战

本文主要介绍了数据同步策略的实战应用,包括全量同步、增量同步、CDC、批处理和流式同步等多种方案,并总结了它们的适用场景和优缺点。同时,详细探讨了数据同步过程中可能出现的异常情况及解决方案,如数据丢失、重复、时序错乱、延迟和任务失败等。重点介绍了阿里巴巴的 DataX 离线数据同步工具,包括其设计理念、主要作用、典型使用场景、支持的数据源、核心架构及优势。此外,还提及了实时数据同步实战中的 Canal 基于 Mysql 数据实时同步的实践。

2025-07-12 18:17:39 835

原创 【离线数仓项目】——电商域ODS层开发实战

本文主要介绍了数据仓库中ODS层的开发实战,包括ODS层的定义、作用、设计特征、采集策略、开发实战、调度示例以及数据存储思考。ODS层作为数据仓库的底层,用于存储从各业务系统同步过来的原始数据,具备准实时或定时更新的能力。它为数仓中其他层提供数据缓冲,减少源系统压力,同时保留一定时间的业务数据,便于问题排查和数据补录。ODS层的设计特征包括命名规范、数据清洗前置、数据标准化等。采集策略包括增量采集、全量采集和拉链采集。开发实战部分详细介绍了ODS层数据离线同步任务、全量初始化同步、增量实时同步、同步结果查询

2025-07-12 09:27:08 995

原创 【离线数仓项目】——数仓开发流程实战

本文围绕离线数仓项目展开,重点阐述了电商业务需求分析、架构与模型设计、数仓系统性能基准以及性能相关指标优化等内容。在电商业务需求分析方面,强调了充分调研的重要性,包括了解组织架构、业务架构、各业务板块主要功能及数据需求等。架构与模型设计部分,详细介绍了技术架构选型、数仓分层设计以及各层的数据模型设计要点。数仓系统性能基准和性能相关指标优化则涉及数据同步时间、存储大小记录以及Hash Clustering等优化技巧,旨在提升数仓性能。

2025-07-12 07:22:02 1012

原创 【离线数仓项目】——离线大数据系统设计

本文详细介绍了离线大数据系统的设计背景、实时系统与离线系统的对比、离线大数据系统的作用以及技术设计等内容。离线大数据系统适用于数据量大、计算复杂且对实时性要求不高的场景,可满足企业数据分析、AI/机器学习训练等需求,同时减轻实时系统压力。文章还探讨了离线大数据系统的整体架构、各层所需核心技术栈以及准实时大数据技术设计和全栈监控体系设计,为相关项目开发提供了全面的技术参考。

2025-07-06 11:31:38 1726

原创 【离线数仓项目】——数据建模与数仓设计

本文详细介绍了离线数仓项目中的数据建模与数仓设计。数据建模面向主题域组织数据,构建多维数据结构,统一业务口径,实现数据的可理解、可追溯、可复用和可扩展。介绍了数仓常见建模方法,包括维度建模及其常见结构(星型模型、雪花模型、星座模型)。重点阐述了数仓分层建模架构(ODS、DWD、DWS、ADS、DIM),以及指标建模与口径管理。还提供了建模流程(从业务调研到文档编写)和电商订单主题建模示例,最后给出设计建议与最佳实践。

2025-07-06 11:22:15 1070

原创 信贷域——信贷授信业务

本文详细介绍了信贷授信业务,包括其核心目标、典型流程、不同机构授信流程的对比、授信业务的其他类型以及授信模块的技术实现。信贷授信是金融机构在放贷前对客户信用额度的评估与审批流程,旨在控制风险、合理设定额度和期限、确保合规,并促进业务发展。文中还探讨了授信流程中的关键技术模块和评估内容,以及银行、消费金融公司和互联网平台在授信流程上的差异。

2025-06-21 20:56:11 1205

原创 信贷域——信贷年审业务

本文介绍了信贷年审业务,包括其核心目标、典型流程、不同机构年审流程对比以及技术方案。信贷年审是金融机构对已授信客户进行的定期风险评估与额度调整流程,旨在动态管理信贷风险。其核心目标是审查客户资质变动、还款行为、评估授信风险、调整额度和决定是否续期。典型流程包括客户筛选、年审触发、评分与策略评估、审批处理和授信结果推送等环节。不同机构的年审流程存在差异,技术方案涉及多个技术模块和实现关键点。

2025-06-21 15:47:46 805

原创 信贷域——资产证券化业务

资产证券化是一种金融技术,将缺乏流动性的资产打包成资产池,通过特定目的载体(SPV)以证券形式出售给投资者,实现融资和风险转移。其涉及原始权益人、SPV和投资者等主体,常见种类有MBS、ABS和CLO。在中国,消费金融公司等机构通过资产证券化实现融资,但需注意风险和关键条件。

2025-06-21 10:22:16 1501

原创 大数据治理域——实时数据开发

本文深入探讨了大数据治理域中的实时数据开发,重点介绍了流式数据处理的核心价值、特点、技术挑战、典型能力和应用场景。同时,详细阐述了流式技术架构,包括数据采集、处理、存储和服务等环节,并针对大促场景提出了相应的技术措施,如实时任务优化、数据链路高可用和系统压测等,旨在为实时业务提供高效、稳定的数据支持。

2025-06-21 08:28:41 1778

原创 大数据治理域——数据服务

本文主要介绍了阿里数据服务架构的演进过程,依次经历了DWSOA、OpenAPI、SmartDQ和OneService四个阶段,每个阶段都有其特点及存在的问题。同时,文章还涉及了技术架构、数据服务最佳实践等内容。

2025-06-21 00:50:05 971

原创 大数据治理域——数据挖掘设计

本文主要介绍了阿里巴巴在大数据治理域中的数据挖掘设计。随着数据量的爆炸式增长,阿里巴巴从使用传统的商业挖掘软件,发展到构建自己的机器学习算法平台,以应对海量数据的挖掘需求。文章概述了数据挖掘的重要性,介绍了阿里巴巴数据挖掘算法平台的发展历程、架构和功能,以及数据挖掘中台体系的构建。最后,通过用户画像和互联网反作弊等案例,展示了数据挖掘在商业中的应用价值。

2025-06-20 23:26:48 1100

机器学习(NLP模型):IMDB的电影评论的数据集

数据集是一个经过清理的电影评论数据集,包含50,000条来自IMDb的电影评论。该数据集是原始IMDb 50K电影评论数据集的预处理版本,旨在方便自然语言处理(NLP)任务和情感分析。数据集的主要特点如下: 预处理:评论文本已经过一系列清理步骤,包括去除HTML标签、扩展缩写词、转换为小写、移除标点符号和非单词符号、去除英文停用词、通过WordNet进行词形还原以及规范化多余空格。这些步骤使得数据更加一致,便于直接用于建模。 稳定性:经过清理后,文本的分词更加稳定,为经典机器学习模型和变换器提供了更好的信号。 可复现性:清理步骤在数据集说明中列出,并在相关笔记本中进行了镜像,确保结果的可复现性。 无预定义分割:该数据集未提供预定义的训练集或测试集分割,用户需要自行创建分割以进行实验。 该数据集适用于情感分析和NLP任务,用户可以跳过繁琐的清理代码,直接进入建模阶段,从而加快实验速度。

2025-09-26

机器学习(预测模型):心理障碍诊断数据集

数据集是一个包含多名患者心理健康评估数据的数据集,旨在通过症状表现识别心理障碍的模式。数据集包含19列,其中17列为行为/心理指标,1列为专家诊断的目标变量。数据集的每个患者都有一个唯一标识符。症状包括持续悲伤、情绪高涨、精疲力尽、睡眠障碍、情绪波动、自杀念头、厌食症、尊重权威、尝试解释、攻击性反应、忽视和继续前进、神经崩溃、承认错误、过度思考、性活动、注意力不集中和乐观等。通过分析,可以识别独特的症状组合、标记关键风险指标、发现某些症状之间的强共病模式、识别准确诊断的最重要症状以及发现与特定诊断有统计学显著关联的多个症状。该数据集以CSV格式提供,采用MIT许可,每年更新一次。

2025-09-26

机器学习(预测模型):印度超级联赛数据集

数据集是一个全面而详细地记录了印度超级联赛(Indian Premier League,简称IPL)在2016年至2025年期间所有球员表现的宝贵资源。这个数据集为板球爱好者、分析师、研究人员以及球队管理层提供了丰富的数据支持,帮助他们深入了解球员的击球和投球表现。 数据来源与处理:该数据集的数据来源于Cricsheet,这是一个知名的板球数据平台,以其详尽的比赛数据而闻名。Cricsheet收集了每场比赛的详细记录,包括球员的每一次击球、投球、跑动等信息。IPL Player Statistics数据集则是从Cricsheet获取的原始数据经过精心处理和整理后的结果。处理过程包括数据清洗、格式化以及去除重复和错误的数据,确保数据的准确性和可用性。 数据内容:数据集涵盖了所有IPL球员在2016年至2025年期间的击球(Batting)和投球(Bowling)统计数据。 数据的应用:这个数据集在多个领域都有广泛的应用。对于球队管理层来说,它可以用于评估球员的表现,帮助他们做出更明智的选人和交易决策。分析师可以利用这些数据进行深入的统计分析,比如比较不同球员的击球风格、投球效率等,为球队制定战术提供依据。研究人员则可以利用这些数据进行更广泛的学术研究,比如研究板球运动的发展趋势、球员表现的影响因素等。此外,对于普通板球迷来说,这个数据集也是一个了解自己喜爱球员表现的绝佳工具。

2025-09-26

机器学习(预测模型): DataCamp课程和学习路径的元数据集合数据集

这个数据集是关于 DataCamp 课程和学习路径的元数据集合,它为研究在线学习模式、课程结构和教育内容组织提供了丰富的信息。DataCamp 是一个知名的在线学习平台,专注于提供数据科学、编程和分析等领域的课程。该数据集详细记录了 DataCamp 平台上众多课程和学习路径的各类信息。 数据集涵盖了课程的基本信息,如课程名称、课程 ID、所属主题、技术标签等。这些信息有助于了解课程的分类和定位,以及它们在不同知识领域中的分布情况。例如,通过分析主题和标签,可以快速识别出哪些课程专注于数据分析,哪些课程侧重于机器学习等。 此外,数据集还包含了课程的结构信息,如课程的章节划分、视频时长、练习数量等。这些数据能够帮助研究者和教育工作者深入了解课程的设计逻辑和学习节奏。例如,通过分析视频时长和练习数量的分布,可以评估课程的难度和学习强度,以及它们是否符合学习者的认知规律。 学习路径是 DataCamp 的一个重要特色,它将多个相关课程组合在一起,形成一个系统的学习计划。该数据集详细记录了每个学习路径所包含的课程列表、学习路径的名称和目标等信息。这些数据有助于分析学习路径的组织方式和学习顺序,以及它们如何帮助学习者逐步构建知识体系。 数据集还提供了学习者与课程之间的互动数据,如课程的完成率、学习者的评分和反馈等。这些数据对于理解在线学习模式至关重要。例如,通过分析完成率,可以发现哪些课程更受学习者欢迎,哪些课程可能存在难度过高或设计不合理的问题。同时,学习者的评分和反馈可以为课程的改进提供直接的依据。 总体而言,这个数据集为研究在线学习平台的课程设计、学习者行为和教育内容组织提供了宝贵的数据支持。它不仅有助于 DataCamp 平台自身的优化和改进,也为教育研究者提供了丰富的研究素材,以探索在线学习的最佳实践和未来发展方向。

2025-09-26

机器学习(预测模型):2025年YouTube平台上排名在前100位的歌曲数据集

数据集是一个专注于2025年YouTube平台上热门音乐的数据集合。旨在为研究人员、音乐爱好者和数据科学家提供一个全面且详细的音乐数据资源。 数据集内容:该数据集涵盖了2025年在YouTube上热度排名前100的歌曲。每首歌曲都包含多个关键属性,例如歌曲名称、演唱者、播放量、点赞数、评论数量、发布日期、歌曲时长、歌词内容等。这些丰富的数据维度使得该数据集不仅能够反映歌曲的流行度,还能提供歌曲的详细信息,便于用户从多个角度进行分析。 数据集用途:这个数据集具有广泛的应用价值。对于音乐市场研究人员来说,它可以帮助分析2025年的音乐流行趋势,了解哪些类型的歌曲更受欢迎,哪些艺术家在当年表现突出。对于音乐推荐系统开发者而言,该数据集提供了丰富的用户行为数据,可用于训练和优化推荐算法,提高推荐的准确性和个性化。此外,数据集中的歌词内容还可以用于文本分析,研究歌词中的情感倾向、主题分布等。 数据集优势:该数据集的一个显著优势是其时效性和完整性。它专门针对2025年的数据进行收集和整理,确保了数据的时效性。同时,数据集涵盖了歌曲的多个重要属性,使得用户能够从多个角度进行分析。此外,数据集的发布平台Kaggle是一个知名的开源数据平台,用户可以方便地下载和使用数据,并与其他用户交流和分享分析结果。 数据集的局限性:尽管该数据集提供了丰富的信息,但它也有一些局限性。例如,数据集仅限于YouTube平台,可能无法完全反映全球音乐市场的全貌。此外,数据集中的某些字段可能存在缺失或不完整的情况,需要用户在使用时进行适当的预处理和清洗。

2025-09-26

机器学习(预测模型):印度的二手车数据集

在当今的汽车市场中,二手车交易占据了重要的份额。为了更好地理解和预测二手车的价格,一个全面且详细的数据集是不可或缺的工具。今天,我们将介绍一个来自印度的二手车数据集,它为相关研究和分析提供了丰富的资源。 这个数据集名为“Comprehensive Used Car Dataset from India”,它包含了7400条二手车的列表信息,每条信息都详细记录了29个特征。这些特征涵盖了车辆的各个方面,从基本信息如品牌、型号、年份,到技术参数如发动机类型、燃油类型、马力,再到使用情况如行驶里程、车龄,以及车辆的其他重要属性如是否为手动挡、是否有天窗等。这些丰富的特征为深入分析二手车的市场价值提供了坚实的基础。 数据集的规模相当可观,7400条记录意味着它涵盖了印度二手车市场的广泛样本。这使得研究人员和分析师能够从宏观角度观察市场趋势,同时也能够针对特定品牌或车型进行微观分析。如此大规模的数据集能够提供足够的数据点,以支持复杂的统计分析和机器学习模型的训练。 该数据集的主要用途是用于价格预测和分析。通过对这些数据的深入挖掘,可以发现影响二手车价格的关键因素。例如,某些品牌的车辆可能因为其品牌声誉而具有更高的保值率;而车辆的行驶里程和车龄则是影响价格的直接因素。此外,数据集还可以帮助分析不同地区的价格差异,以及市场供需关系对价格的影响。 总之,这个来自印度的二手车数据集是一个宝贵的资源。它不仅为研究人员提供了丰富的数据用于学术研究,也为二手车经销商、评估师和消费者提供了实用的工具,帮助他们更好地理解市场动态,做出更明智的决策。无论是用于开发预测模型,还是进行市场分析,这个数据集都具有极高的价值。

2025-09-26

机器学习(预测模型):2015-2025年美国石油和天然气生产及处置情况

数据集它涵盖了美国从2015年到2025年的石油和天然气生产及处置情况。数据集记录了美国在这十年间石油和天然气的开采、生产、使用、销售以及储存等多方面的详细信息。通过这些数据,研究人员和相关从业者可以深入了解美国石油和天然气行业的发展趋势,包括产量的变化、不同地区的生产情况、能源的分配和使用等。例如,可以分析出在这段时间内哪些地区的石油和天然气产量增长迅速,哪些类型的能源处置方式更常见,以及能源市场的供需关系等。这些信息对于能源政策的制定、能源企业的战略规划以及能源市场的研究都具有重要的参考价值。同时,这个数据集也为相关领域的数据分析、机器学习等研究提供了丰富的素材,有助于推动能源领域的数字化和智能化发展。

2025-09-26

机器学习(NLP大模型):越南在线新闻数据集

数据集是一个专门用于越南语新闻分析的数据集。它包含了大量从越南主流新闻网站爬取的新闻文章,涵盖了政治、经济、社会、文化等多个领域,为研究越南语新闻文本提供了丰富的素材。 数据集的结构清晰,每条新闻记录通常包含标题、正文、发布日期、来源网站等字段。这些信息不仅有助于了解新闻内容本身,还能从时间维度和媒体来源角度进行分析,例如研究不同媒体对同一事件的报道差异,或者分析特定时间段内新闻热点的变化趋势。 对于自然语言处理领域的研究人员来说,这个数据集可用于训练和测试越南语文本分类、情感分析、主题建模等模型。例如,通过对新闻标题和正文的情感分析,可以了解公众对不同事件的态度倾向;利用主题建模可以挖掘出一段时间内的主要新闻话题。 此外,该数据集对于学习越南语语言学和文化研究也具有重要价值。它提供了大量真实的越南语使用场景,有助于研究越南语的词汇、语法特点以及语言风格的演变。同时,通过对新闻内容的分析,还可以深入了解越南的社会文化背景和价值观。 总之,越南在线新闻数据集是一个高质量、多用途的数据资源,对于从事越南语相关研究的学者和研究人员来说,具有重要的参考价值。

2025-09-20

机器学习(NLP大模型):巴西《圣保罗页报》(Folha)网站在2024年2月之前发布的新闻数据集

数据集由巴西《圣保罗页报》(Folha)网站在2024年2月之前发布的新闻数据集。该数据集包含了丰富的新闻信息,对于研究巴西新闻媒体、社会动态以及自然语言处理等领域具有重要价值。 数据集的编码格式为UTF-8,这种编码方式能够确保数据在不同系统和平台上的兼容性和准确性。尽管数据在收集过程中已经经过了一定程度的清洗,但用户在使用时仍可能需要根据具体需求进行进一步的清理和预处理,以确保数据的质量和可用性。 数据集中的每一行代表一条新闻,包含以下五个主要列: Title(标题):新闻的标题,通常是对新闻内容的高度概括,有助于快速了解新闻的主题。 Content(内容):新闻的正文部分,详细描述了事件的细节、背景和相关人物等信息。 URL(网址):新闻在《圣保罗页报》网站上的原始链接,用户可以通过这个链接访问原始新闻页面,获取更多信息或验证数据的准确性。 Published(发布时间):新闻的发布时间,这对于分析新闻的时效性、趋势以及事件的发展顺序非常重要。 Category(分类):新闻的分类标签,有助于用户快速筛选和分析特定主题的新闻,例如政治、经济、体育等。 此外,该数据集的应用程序是由开发者使用C#语言开发的,并且相关的代码仓库链接也已提供。这使得其他用户可以查看应用程序的代码,了解数据收集和处理的具体过程,甚至可以根据自己的需求对应用程序进行修改和扩展。 总的来说,这个数据集为研究人员、数据分析师以及自然语言处理爱好者提供了一个宝贵的资源,可以帮助他们深入了解巴西的新闻媒体环境,进行文本分析、情感分析、主题建模等多方面的研究。

2025-09-20

机器学习(NLP大模型):印尼真实与虚假政治新闻数据集

数据集是关于印尼政治新闻的数据集,包含真实和虚假两类新闻。数据来源广泛,涵盖了印尼知名媒体CNN、Kompas、Tempo以及专门辟谣的网站Turnbackhoax。该数据集分为原始数据和清理后的数据,方便不同需求的研究者使用。数据集的收集工具可在GitHub上找到,其使用了MIT开源许可,允许用户在遵守相应条款的前提下自由使用数据。数据集的更新频率为每年一次,以确保数据的时效性和准确性。该数据集对于研究印尼政治新闻的真实性、传播模式以及虚假信息的识别等方面具有重要价值。

2025-09-20

机器学习(预测模型):900天的模拟早晨日常数据集

这个数据集包含了900天的模拟早晨日常数据,涵盖了起床时间、睡眠时长、冥想、锻炼、早餐类型、记日记习惯、生产力得分和情绪等多方面内容。它旨在探索早晨习惯与日常生产力或情绪之间的关系。 数据集中的起床时间记录了每天的起床时刻,反映了个人的作息规律。睡眠时长则显示了每晚的睡眠时间,这对于了解个人的休息状态至关重要。冥想和锻炼记录了每天是否有进行这些活动以及持续的时间,这些习惯对身心健康有重要影响。早餐类型则反映了每天的早餐选择,包括不同种类的食物,这可能与一天的精力和情绪有关。记日记习惯记录了每天是否记日记以及日记的内容,这有助于了解个人的心理状态和自我反思能力。生产力得分则通过一定的评估标准衡量了每天的工作效率和成果,而情绪则记录了每天的情绪状态,包括积极、消极或中性等。 通过这些数据,我们可以分析出哪些早晨习惯对生产力和情绪有积极的影响,例如,规律的起床时间和充足的睡眠时长可能有助于提高生产力和改善情绪;而冥想和锻炼等健康习惯也可能对情绪产生积极的作用。同时,早餐类型和记日记习惯等也可能对个人的日常表现产生一定的影响。这个数据集为我们提供了一个全面的视角来研究早晨习惯与日常表现之间的关系,有助于我们更好地了解如何通过调整早晨习惯来提高生产力和改善情绪,从而更好地安排自己的日常生活。

2025-09-20

机器学习(预测模型)2025年全球主要城市每日天气情况的数据集

数据集它包含了2025年全球主要城市的每日天气数据。数据集的主要内容包括以下几个方面: 时间:以“YYYY-MM-DD”格式记录的日期。 最高气温:以摄氏度为单位记录的每日最高气温。 最低气温:以摄氏度为单位记录的每日最低气温。 降水量:以毫米为单位记录的每日总降水量。 天气代码:根据Open-Meteo分类的天气代码。 城市名称:数据所对应的城市名称。 这些数据是通过Open-Meteo API收集的,以CSV文件的形式提供,文件名为“worldwide_weather_2025.csv”,大小约为242.32KB。该数据集可以用于多种研究和分析,例如气候研究、气象预测模型的训练、不同城市之间的天气比较等。对于想要了解2025年全球天气情况的研究者、气象爱好者或者相关领域的专业人士来说,这是一个非常有价值的资源。数据集是一个全面且实用的数据集,它为全球天气研究提供了一个坚实的基础。无论是学术研究、商业分析还是个人兴趣探索,这个数据集都能满足用户对2025年全球天气数据的需求。

2025-09-20

机器学习(计算机视觉):专门包含假美元货币图片的图像数据集

数据集是一个专门包含假币图片的资源库,该数据集对于相关领域的研究和应用具有重要价值。它涵盖了多种假币的图像样本,这些图片展示了不同面额、不同国家货币的伪造版本。通过这些图像,研究人员可以观察到假币在设计、印刷工艺、防伪特征等方面的细节,从而更好地了解假币的制作手法和特点。 在金融安全领域,该数据集可用于训练机器学习模型,以提高假币识别的准确率。通过对大量假币图片的学习,模型能够更精准地识别出假币的特征,为金融机构和执法部门提供技术支持,帮助他们更有效地打击假币犯罪。此外,该数据集也可用于教育目的,向公众普及假币识别知识,提高大众的防范意识。 然而,需要注意的是,使用该数据集必须严格遵守相关法律法规,仅能在合法、合规的范围内进行研究和应用。未经授权的制作、传播假币图片是违法的,该数据集的使用应仅限于打击假币犯罪、货币防伪研究等正当目的。总之,“Counterfeit Money Images”数据集是一个有助于提升金融安全和打击假币犯罪的宝贵资源,但其使用必须遵循法律和道德规范。

2025-09-20

机器学习(预测模型):为教育和研究目的而创建的真实的工作模式和薪酬结构数据集

这个数据集是一个专门为教育和研究目的而创建的合成数据集,它并不反映任何真实存在的个人或公司。该数据集模拟了真实的工作模式和薪酬结构,旨在为数据分析、可视化和机器学习项目提供一个实用的工具。 数据集涵盖了多个行业的专业人士信息,内容丰富多样。它包含了人口统计学特征,如年龄、性别等基本信息;还涵盖了工作概况,例如工作经验水平、职业类型、工作时长等,这些信息有助于了解不同工作角色的特点。此外,数据集还详细记录了专业人士的教育背景,包括学历层次和专业领域,以及他们所持有的各种认证,这些因素往往与职业发展和薪资水平密切相关。 薪酬和福利是数据集中的重要部分,它提供了关于薪资水平和福利待遇的具体数据,这些数据可以帮助研究者分析不同因素对薪酬的影响。通过这个数据集,用户可以探索工作经验、技能、公司类型等因素是如何影响薪酬和福利的,从而为人力资源管理、职业规划和薪资谈判等提供数据支持。 总之,这个数据集是一个结构化的、多维度的专业人士信息集合,它为教育和研究提供了一个宝贵的资源,可以帮助用户深入了解劳动力市场的各种模式和趋势。

2025-09-20

机器学习(数据处理):数据预处理练习的合成数据集

数据预处理的痛点:在数据科学和机器学习领域,数据预处理是一个非常重要的环节。通常情况下,为了练习不同的预处理技术,人们需要在多个不同的数据集之间切换,这可能会耗费大量的时间和精力。例如,要练习处理缺失值,可能需要找一个有缺失值的数据集;要练习特征工程,又需要找一个特征较多的数据集。这种频繁切换数据集的方式,对于初学者来说可能会感到困惑和疲惫,对于专业人士来说也不够高效。为了解决上述问题,这个notebook(笔记本)生成了一个单一的合成数据集。合成数据集是通过计算机程序生成的数据,它具有以下特点:混合数据类型:数据集中包含了多种类型的数据,包括数值型(numerical)、分类型(categorical,其中又分为有序分类ordinal和无序分类nominal)和二进制型(binary)。数值型数据可以是年龄、收入等连续的数值;分类型数据可以是性别、职业等具有有限类别但不连续的值;二进制型数据则是只有0和1两种取值,例如是否患病等。现实的不完美性:为了使数据集更加接近真实世界的数据,它故意包含了缺失值、异常值和重复值。在实际的数据分析中,这些不完美的数据是常见的,需要进行相应的处理。例如,缺失值可能需要填充或删除;异常值可能需要修正或剔除;重复值可能需要去重等。丰富的预处理可能性:这个数据集提供了几乎无限的预处理尝试机会,包括但不限于数据缩放(scaling)、编码(encoding)、填充缺失值(imputing)、去除重复值(removing duplicates)、特征工程(feature engineering)等。数据缩放可以将数据转换到相同的尺度,便于模型处理;编码可以将分类数据转换为数值形式,使其能够被模型理解;填充缺失值可以保证数据的完整性;去除重复值可以避免模型对某些数据过度拟合;特征工程则是通过对原始数据进行转换和组合,提取出更有用的特征。

2025-09-19

机器学习(NLP模型):206,000篇孟加拉语新闻文章的丰富语料库数据集

数据集是一个包含超过206,000篇孟加拉语新闻文章的丰富语料库。这些文章是从孟加拉国极具影响力的报纸《Prothom Alo》中精心抓取的,涵盖了2022年至2025年期间的各类新闻报道。 《Prothom Alo》作为孟加拉国最大的报纸之一,以其广泛的读者群体和权威的新闻报道而闻名。该数据集的新闻内容丰富多样,涉及政治、体育、娱乐、地区新闻以及国际新闻等多个领域,为研究者和开发者提供了宝贵的资源。 数据集的结构设计科学合理,每条记录都包含了详细的元数据。具体来说,每篇新闻文章都配有其原始链接(URL),方便用户追溯文章的来源。文章的标题(Title)以孟加拉语呈现,清晰地概括了新闻的核心内容。新闻所属的类别或版块名称(Section)则帮助用户快速了解文章的主题范围。此外,每篇文章还标注了作者(Author),可能是记者的姓名或所属部门,这为研究新闻报道的风格和来源提供了线索。 发布日期(Published Date)以ISO格式和文本格式双重记录,确保了日期信息的准确性和易读性。同时,每篇文章还附有人工分配的主题标签(Tags),这些标签有助于用户快速检索和分类感兴趣的新闻内容。文章的正文(Body)完整地呈现了新闻的详细内容,为语言研究、文本分析和机器学习等应用提供了丰富的素材。部分文章还提供了字数统计(Word Count),这为文本分析和语言模型训练提供了额外的便利。 总的来说,这个数据集不仅为孟加拉语自然语言处理研究提供了宝贵的资源,也为了解孟加拉国的社会动态、文化趋势和新闻报道风格提供了独特的视角。无论是用于学术研究、语言学习还是开发相关应用,这个数据集都具有极高的价值和广泛的应用前景。

2025-09-19

机器学习(NLP模型):麻省理工学院(MIT)的新闻通讯中抓取的人工智能(AI)相关的新闻数据集

MIT AI News Dataset 是一个从麻省理工学院(MIT)新闻网站上抓取的人工智能相关文章的数据集。它涵盖了人工智能、机器学习、机器人技术和新兴技术等主题,数据来源于 MIT News 的人工智能专题页面。 该数据集包含以下字段:文章标题、作者、发布日期、摘要、正文、原始文章链接以及相关研究论文的链接(如果有的话)。它覆盖了多个研究领域,如人工智能在药物发现和医疗保健中的应用、蛋白质语言模型、可持续人工智能和生态驾驶、机器人技术和具身智能、化学和材料科学、气候和清洁能源等。 这个数据集适合用于自然语言处理(NLP)任务,如文本摘要、主题建模、情感分析等,也可以用于分析人工智能和科学研究的趋势、文本分类和信息检索,以及构建人工智能研究的知识图谱。此外,它还可用于教育项目和提高人工智能素养。

2025-09-19

机器学习(预测模型):美联储主席期间所有FOMC新闻发布会的转录文本集合数据集

这个数据集是杰罗姆·鲍威尔在2018年至2025年担任美联储主席期间所有FOMC新闻发布会的转录文本集合,堪称最全面的同类资料。它为自然语言处理(NLP)、情感分析和金融市场研究提供了绝佳的素材。 数据集中的转录文本经过精心处理,具备高度的可用性。首先,文本被结构化,这意味着它们被组织成清晰的格式,便于分析和处理。其次,进行了自动化的人名标记,这有助于快速识别和提取关键人物信息。此外,文本还经过了清洗,去除了无关的干扰内容,使得数据更加纯净,可以直接用于机器学习项目、数据分析或研究工作,无需额外的预处理步骤。 对于NLP研究者来说,这些文本是训练语言模型、开发文本分析工具的宝贵资源。情感分析专家可以利用这些数据来研究鲍威尔的发言对市场情绪的影响,从而预测市场反应。金融市场研究者则可以通过分析这些发言来探究美联储政策对经济和金融市场的具体影响,例如利率调整、股市波动等。 总之,这个数据集为金融领域的研究和分析提供了坚实的基础,其高质量和易用性使其成为相关领域研究者的理想选择。

2025-09-19

机器学习(预测模型):Steam 游戏销售历史数据的数据集

数据集是一个专注于 Steam 游戏销售历史数据的数据集。该数据集为研究 Steam 游戏市场提供了丰富的信息,是游戏开发者、市场研究人员和数据分析师的重要资源。 数据集内容:该数据集包含了大量 Steam 游戏的销售数据,涵盖了从游戏发布到数据集创建期间的详细信息。数据字段可能包括游戏名称、发布日期、销售价格、折扣信息、销量、销售额、用户评价等。这些数据可以帮助用户全面了解每款游戏的市场表现。 数据集价值:游戏开发者:通过分析数据集,开发者可以了解不同类型游戏的受欢迎程度、用户评分和销售趋势,从而优化游戏设计和定价策略。 市场研究人员:该数据集提供了丰富的历史数据,可用于分析游戏市场的消费趋势、用户偏好变化以及不同促销策略的效果。 数据分析师:数据集为分析师提供了实践机会,可用于数据清洗、可视化和机器学习模型的构建,以预测游戏销售趋势。 数据集特点:数据集具有较高的完整性和准确性,涵盖了多种游戏类型和广泛的发布时间范围。它不仅提供了定量数据(如销量和价格),还可能包含定性数据(如用户评价和标签),为多维度分析提供了可能。 使用建议:在使用该数据集时,建议用户先进行数据探索,了解数据结构和字段含义。然后,可以根据研究目的选择合适的数据处理和分析方法,如数据可视化、回归分析或机器学习算法。此外,由于游戏市场不断变化,建议结合最新的市场动态和行业报告,以获得更准确的分析结果。 数据集是一个宝贵的资源,为 Steam 游戏市场的研究和分析提供了坚实的基础。

2025-09-13

机器学习(预测模型):Mashable在两年期间发布文章的多种不同特征(即异构特征集合)

数据集汇总了Mashable在两年间发布的文章信息,旨在预测文章在社交网络上的分享数量,衡量其受欢迎程度。数据集包含61个属性,其中58个是预测属性,可用于构建模型分析文章受欢迎的原因;2个非预测属性可能提供辅助信息;1个目标字段即文章分享数量。Mashable作为2005年成立的数字媒体网站,被称作社交媒体“一站式商店”,拥有庞大社交媒体粉丝群体,其文章传播情况具有研究价值。该数据集公开可获取,方便相关研究与分析。 Mashable公司是一家成立于2005年的数字媒体网站。它被描述为社交媒体的“一站式商店”,意味着它整合了众多社交媒体相关的内容、信息和资源,为用户提供了便捷的获取和交流社交媒体相关内容的平台。截至2015年11月,Mashable在Twitter上拥有超过600万的粉丝,在Facebook上拥有超过320万的粉丝。这表明Mashable在社交媒体领域具有较大的影响力和广泛的受众基础,其发布的内容能够吸引大量用户的关注和互动,这也是该数据集具有一定研究价值的背景之一。

2025-09-13

机器学习(预测模型);电子商务(E-commerce)相关的数据集

该数据集主要包含一个名为的文件,文件大小为315.46 KB。数据集旨在通过电商网站销售报告的形式,展示在线销售的业绩,涵盖收入、顾客趋势、畅销产品以及整体业务增长等关键指标。 该数据集可能包含多个字段,如订单编号、用户信息、购买时间、产品详情、价格、数量等,这些数据可以帮助研究人员和商业分析师深入了解电商运营的各个方面。例如,通过分析顾客购买行为,企业可以优化营销策略;通过研究产品销售趋势,企业可以调整库存管理。 数据集的创建者Madhav.W可能是一位数据科学家或商业分析师,他们通过收集和整理这些数据,为用户提供了一个有价值的资源。该数据集在Kaggle平台上发布,Kaggle是一个知名的机器学习和数据分析社区,用户可以在这里找到各种数据集、教程和竞赛。 总的来说,这个数据集为那些对电子商务数据分析感兴趣的用户提供了丰富的数据资源,可用于学术研究、商业分析或机器学习模型的训练。

2025-09-26

机器学习(预测模型):飞机注册主目录、飞机注册总清单数据集

这个数据集包含了全球范围内飞机的注册信息。它是一个关于飞机注册的主目录,涵盖了大量飞机的详细数据。具体来说,数据集可能包含以下字段: 注册编号(Registration Number):每架飞机的唯一识别号码,用于区分不同的飞机。 飞机型号(Aircraft Type):飞机的具体型号,例如波音737、空客A320等。 制造商(Manufacturer):生产飞机的公司,如波音、空客等。 制造日期(Manufacture Date):飞机的生产日期。 所属公司(Owner Company):拥有该飞机的航空公司或其他机构。 国籍(Nationality):飞机所属国家。 状态(Status):飞机的当前状态,如在役、退役等。 数据集用途 这个数据集对于航空领域的研究和分析具有重要价值。它可以用于以下方面: 航空市场分析:通过分析飞机的注册信息,了解不同国家和地区的航空市场分布和发展趋势。 飞机运营研究:研究飞机的运营情况,包括机队的更新、退役等。 安全监管:帮助航空管理部门对飞机进行监管,确保飞机的安全运营。 航空历史研究:通过分析飞机的注册信息,了解航空业的发展历程。 数据集特点 全面性:数据集包含了全球范围内的飞机注册信息,覆盖面广。 详细性:每个飞机的注册信息都较为详细,包括型号、制造商、所属公司等。 权威性:数据来源于官方注册信息,具有较高的可信度。 数据集的局限性:尽管数据集非常全面,但也可能存在一些局限性。例如,数据的更新频率可能较低,部分飞机的状态可能已经发生变化。此外,数据集中可能缺少一些特定的详细信息,如飞机的飞行小时数等。 总之,数据集是一个非常有价值的资源,对于航空领域的研究人员和从业者来说,它提供了丰富的数据支持。

2025-09-26

机器学习(计算机视觉):猴痘皮肤图像数据集

这个数据集是为研究猴痘等皮肤疾病而精心构建的资源,它主要来源于两个权威数据库:猴痘皮肤图像数据集(MSID)和DermNet。MSID数据库涵盖了猴痘、水痘、麻疹以及正常皮肤状况这四类图像,这些图像均来自可靠的网络资源,如知名健康网站、报纸和学术期刊。尽管MSID已经包含了多种复杂的皮肤状况,但一些疾病在外观上可能较为相似,难以区分。 为了进一步丰富数据集的多样性并提升其复杂性,研究者们还从DermNet的在线公共资料库中引入了更多图像。DermNet是一个专业的皮肤疾病资源库,其图像资源丰富且具有较高的专业性。通过整合这两个数据库的图像资源,最终形成了一个包含八个类别的综合数据集。

2025-09-26

机器学习(预测模型):著名开放世界游戏 Grand City 的详细数据集

数据集是一个关于著名开放世界游戏 Grand City 的详细数据集,旨在帮助研究人员、数据分析师和游戏爱好者深入探索这款游戏的各个方面。数据集结构:该数据集包含 52099 行和 16 列,涵盖了游戏中的各种详细信息。每一行代表一个数据记录,而每一列则对应一个特定的属性或特征。这些列可能包括游戏中的角色、任务、地点、物品等信息,具体取决于数据集的设计。值得注意的是,该数据集没有缺失值,这使得数据的完整性和可用性非常高,为数据分析提供了坚实的基础。 数据集用途:Grand City Games 数据集的主要用途是帮助用户通过数据来分析和理解游戏。通过这个数据集,用户可以: 探索游戏细节:了解游戏中的各种元素,如角色的属性、任务的难度、地点的分布等。 发现规律:通过数据分析,发现游戏中隐藏的模式和规律,例如某些任务的完成率、玩家的行为模式等。 构建模型:利用数据集中的信息,构建预测模型或进行机器学习实验,例如预测玩家的留存率或任务的完成时间。 游戏设计参考:对于游戏开发者来说,该数据集可以作为参考,帮助他们优化游戏设计,提升玩家体验。 数据集的价值:Grand City 作为一款著名的开放世界游戏,拥有庞大的玩家群体和丰富的游戏内容。这个数据集为研究人员和开发者提供了一个宝贵的资源,使他们能够通过数据驱动的方法来深入了解游戏的各个方面。无论是进行学术研究、商业分析还是游戏开发,这个数据集都能提供丰富的信息和有价值的见解。 总之,数据集是一个高质量、结构完整且用途广泛的数据集,为游戏分析和研究提供了强大的支持。

2025-09-26

机器学习(预测模型):海洋浮标数据数据集

是一个珍贵且极具研究价值的海洋数据集,它涵盖了从1980年一直到当前时间的海洋浮标数据。这些数据主要来源于部署在广阔海洋中的各类浮标,它们是海洋科学领域的重要观测工具。 海洋浮标是一种能够自主漂浮在海面上的设备,通常配备有多种传感器,用于实时监测和记录海洋环境的各种参数。这些参数包括但不限于海水温度、盐度、海流速度、海浪高度、风速风向等。这些数据对于理解海洋的物理、化学和生物特性至关重要,能够帮助科学家们研究海洋环流、气候变化、海洋生态系统等多方面的内容。 该数据集的时间跨度长达数十年,这使得它成为研究长期海洋变化趋势的理想资源。通过分析这些长期的数据,研究人员可以观察到海洋环境的季节性变化、年际变化以及长期的演变趋势。例如,他们可以研究海洋温度的长期变化,以评估全球变暖对海洋的影响;也可以通过分析海流数据,了解海洋环流模式的稳定性或变化情况。 此外,这些数据还具有广泛的应用价值。在气象学领域,海洋浮标数据可以为天气预报提供重要的海洋环境背景信息;在海洋工程中,这些数据有助于设计更安全、更可靠的海洋设施;对于渔业和海洋资源开发行业来说,了解海洋环境的变化规律也能够为资源的可持续利用提供科学依据。 然而,需要注意的是,由于海洋浮标的分布和观测条件的限制,这些数据可能存在一定的空间和时间上的不均匀性。在某些海域,浮标的数量可能较多,数据较为密集;而在一些偏远或难以到达的区域,数据可能会相对稀少。因此,在使用这些数据进行研究时,需要充分考虑这些因素,以确保研究结果的准确性和可靠性。 总之,数据集是一个宝贵的海洋科学资源,它为研究人员提供了一个深入了解海洋环境变化的机会,并且在多个领域都有着重要的应用价值。随着海洋观测技术的不断发展,未来这个数据集还将继续更新和扩充,为海洋科学研究和相关应用提供更多的支持。

2025-09-26

机器学习(预测模型):不同香水数据集

数据集是一个精心设计的资源,旨在为研究人员、爱好者以及相关从业者提供关于不同品牌香水的详细信息,以便他们能够深入研究和细致分析香水的各个方面。它涵盖了多个维度的数据,包括但不限于香水的类型、气味、目标人群以及持久度等关键特征。 从类型上看,数据集中包含了多种不同类型的香水,如淡香水(Eau de Toilette)、浓香水(Eau de Parfum)等,每种类型都有其独特的浓度和挥发速度,这使得研究人员可以对比分析不同类型香水的特点和差异。在气味方面,数据集详细记录了各种香水的主要香调,如花香调、果香调、木质调等,这为研究香水的气味构成和搭配提供了丰富的素材。同时,数据集还标注了每款香水的目标人群,比如是适合男性、女性还是无性别限制,这有助于分析不同人群对香水的偏好和市场需求。 此外,数据集还提供了关于香水持久度的信息,即每款香水在正常使用情况下的持续时间。这一数据对于评估香水的实用性和性价比至关重要。例如,一款持久度较高的香水可能更适合在特殊场合使用,而持久度较短的香水则可能更适合日常快速更换香味的场景。通过这些数据,研究人员可以更好地理解香水的市场定位和消费者需求。 总的来说,这个数据集是一个全面且实用的资源,它不仅为香水的研究提供了丰富的数据支持,也为香水产业的发展提供了有价值的参考。无论是用于学术研究、市场分析还是个人兴趣探索,这个数据集都能满足不同用户的需求,帮助他们更深入地了解香水的世界。

2025-09-26

机器学习(预测模型):奶牛健康和饲养的数据集

数据集是一个关于奶牛健康和饲养的数据集,旨在支持精准畜牧养殖领域的创新。该数据集包含奶牛的健康记录、饲养模式以及牛奶产量统计数据。通过这些数据,研究人员可以利用饲养和健康指标预测牛奶产量,通过异常检测发现疾病的早期迹象,探索营养、健康和生产力之间的关系,构建可持续奶牛养殖的 AI 驱动解决方案。 数据集包含以下内容:牛奶产量和生产力数据、饲养习惯(摄入量、营养成分、饲料类型)、健康状况、症状和治疗以及影响奶牛的管理与环境因素。它适用于数据科学家、兽医、农业科技研究人员以及对动物健康监测和智能奶牛养殖解决方案感兴趣的人群。

2025-09-26

机器学习(预测模型):Flipkart平台上无人机产品的数据集

Flipkart平台上无人机产品的数据集。数据来源于Flipkart网站上列出的无人机产品。作者在收集过程中,不仅关注产品的价格,还着重收集了对买家和分析师真正重要的技术规格信息。这使得数据集不仅涵盖了价格信息,还包含了丰富的技术细节,为深入分析提供了基础。 数据结构与内容:该数据集包含了多个关键字段,包括产品名称、无人机类型、控制范围、电池类型、重量、实际价格、折扣价格和折扣百分比等。这些字段覆盖了无人机产品的核心信息,从基本的型号到具体的技术参数,再到价格信息,为用户提供了全面的数据支持。 数据用途与价值:在处理数据集的过程中,作者发现产品品牌、折扣和技术规格等因素对定价模式有着显著的影响。因此,这个数据集不仅是一个简单的商品信息汇总,更是一个分析电子商务趋势、构建价格预测模型和进行探索性数据分析(EDA)的良好起点。用户可以通过这个数据集深入了解无人机市场的价格动态,分析不同品牌和规格的市场表现,甚至可以尝试构建机器学习模型来预测价格走势。 社区互动与反馈:作者希望这个数据集能够得到社区的认可和支持。一个简单的点赞(upvote)不仅能提升作者的士气,还能激励他继续分享更多有价值的数据集。此外,作者也鼓励社区成员通过构建和发布基于这个数据集的笔记本(notebooks)来与之互动,这将进一步丰富数据集的应用场景,促进社区的交流和学习。 总之,数据集是一个高质量、高价值的数据集,适合任何对电子商务数据分析、机器学习和数据科学感兴趣的用户。

2025-09-26

机器学习(预测模型):2024年全球金融概览数据集

数据集是一个关于2024年8月15日全球金融状况的数据集。它涵盖了全球主要经济体的金融市场、宏观经济指标、政府债务、汇率波动、大宗商品价格等多方面信息,为政策制定者、投资者、研究人员和企业高管提供了一个全面的全球金融概览。 该数据集包含了以下内容: 金融市场指标:主要股票指数、市场总值、股票指数的每日变化百分比等。 宏观经济指标:GDP增长率、通货膨胀率、利率、失业率等。 汇率信息:各国货币对美元的汇率、货币年初至今的变化百分比。 政府债务与贸易平衡:政府债务占GDP的百分比、经常账户余额等。 投资与商品市场:外国直接投资流入、大宗商品价格指数、油价、金价等。 其他指标:10年期国债收益率、主权信用评级、政治风险评分、银行业健康状况、房地产市场指数等。 数据集的列描述详细列出了每个指标的含义,例如“Country”表示国家名称,“Date”表示数据观测日期,“Stock_Index”表示主要股票指数的名称,“Index_Value”表示股票指数的当前值等。这些数据为分析全球市场趋势、评估各国金融健康状况以及发现国际金融中的机会或威胁提供了有力支持。

2025-09-26

机器学习(预测模型):保险数据集

在当今医疗保健领域,数据的力量正被广泛挖掘以优化保险定价、提升健康管理效率等。其中,“医疗保险费用数据集”便是一个极具价值的资源,它为研究人员、数据分析师以及机器学习从业者提供了丰富的信息,助力他们深入探索影响医疗保险费用的多种因素。 该数据集涵盖了众多关键维度的信息。首先,它包含了个人的人口统计学特征,如年龄、性别等。年龄是影响医疗需求和保险费用的重要因素之一,不同年龄段的人群在健康状况和医疗资源消耗上存在显著差异;而性别也与某些疾病的发生率和治疗成本相关。此外,数据集中还记录了人们的生活方式,例如是否吸烟、运动习惯等。吸烟是许多慢性疾病的高危因素,吸烟者往往面临更高的医疗风险和保险费用;而规律的运动则有助于维持健康,降低患病概率和医疗成本。 健康相关因素也是数据集的重要组成部分,可能包括身体质量指数(BMI)、疾病诊断情况等。BMI是衡量体重与身高比例的一个重要指标,过高或过低的BMI都可能暗示潜在的健康问题,进而影响医疗费用;疾病诊断情况则直接关联到治疗的复杂性和费用。这些丰富的信息共同构成了数据集的基础框架,为后续的分析和建模提供了坚实的数据基础。 在实际应用中,该数据集被广泛用于预测建模、统计分析以及机器学习任务。通过收集和整理这些多维度的数据,研究人员可以运用各种算法和模型来预测医疗保险费用。例如,利用回归分析可以探究不同因素对保险费用的具体影响程度,帮助保险公司更精准地制定保险定价策略;机器学习算法则可以进一步挖掘数据中的复杂关系,提高预测的准确性和可靠性。此外,该数据集也为医疗保健领域的政策制定者提供了参考依据,帮助他们更好地理解不同人群的医疗需求和费用结构,从而制定更合理的医疗保障政策。 总之,“医疗保险费用数据集”是一个内容丰富、应用广泛的数据资源。它不仅涵盖了个人的多方面信息,还为医疗保健领域的数据分析和建模提供了强大的支持,有助于推动医疗保险。

2025-09-26

机器学习(预测模型):餐厅顾客支付数据集

数据集是一个关于餐厅顾客支付信息的数据集。它包含了餐厅账单和顾客小费的相关信息,例如总账单金额、小费金额、顾客性别、是否吸烟、用餐日期、用餐时间以及用餐人数等。这个数据集通常用于学习数据分析,帮助人们了解顾客的消费和小费习惯。 数据集的内容涵盖了餐厅的账单、小费以及顾客的详细信息,如性别、吸烟状态、日期、时间和用餐人数等。这些数据可以帮助分析不同因素对顾客支付行为的影响。例如,可以通过分析性别、用餐时间和用餐人数等因素,来研究它们与小费金额之间的关系。 这个数据集基于餐厅的消费记录,常用于教学、学习和练习数据分析。它适用于公众使用,可以自由用于学习、教学和研究目的。通过这个数据集,学习者可以练习数据处理、可视化和统计分析等技能,从而更好地理解顾客在餐厅的支付行为。

2025-09-26

机器学习(预测模型):印度每月电力消费量(2019 - 2025 年)数据集

详细记录了印度从2019年到2025年这六年多时间里每月的电力消费情况。电力消费是一个国家经济发展、社会生活等诸多方面的重要指标,通过这个数据集,我们可以从多个角度进行分析和研究。 从经济角度来说,电力消费与工业生产、商业活动紧密相关。工业是电力消费的大户,不同产业的发展态势、生产规模的扩大或收缩,都会在电力消费数据上有所体现。例如,制造业的繁荣可能导致工业用电量的显著增加,而一些高耗能产业的转型升级或产能调整,也会使电力消费结构发生变化。商业用电则涵盖了众多商业场所,如商场、写字楼、酒店等,其用电量的变化可以反映出商业活动的活跃程度,以及不同商业业态的发展趋势。 在社会生活方面,居民用电是电力消费的重要组成部分。随着人们生活水平的提高,家用电器的普及和使用频率增加,居民用电量也在不断上升。通过分析居民用电的季节性变化、年度增长趋势等,可以了解居民生活方式的改变,以及社会福利水平的提升。此外,电力消费数据还可以与人口增长、城市化进程等因素相结合,深入研究社会发展的动态过程。 从能源管理与规划的角度来看,这个数据集对于制定能源政策、优化电力供应和分配具有重要意义。了解不同时期、不同地区的电力消费特点,可以帮助政府和能源企业合理规划电力基础设施建设,预测电力需求的增长,确保电力供应的稳定性和可靠性。同时,通过对电力消费数据的分析,还可以发现能源利用效率方面存在的问题,为节能减排措施的制定提供依据。 总之,数据集是一个涵盖时间跨度较长、内容丰富且具有重要研究价值的数据资源,对于从事经济研究、社会学研究、能源领域研究等多方面工作的人员来说,都有着重要的参考意义。

2025-09-26

机器学习(预测模型):全面的银行数据库数据集

数据集是一个全面的银行数据库,它包含了丰富的银行相关数据。这个数据库可能涵盖了多个方面的信息,例如银行的客户数据,包括客户的个人信息、账户类型、账户余额等,这些信息可以帮助银行更好地了解客户的需求和行为模式。同时,它也可能包含交易数据,如交易时间、交易金额、交易类型等,这些数据对于分析客户的消费习惯和资金流动情况非常有价值。此外,该数据库可能还包含了银行的业务数据,比如贷款信息、信用卡使用情况等,这些数据能够帮助银行评估风险和优化业务流程。 这个数据库的全面性体现在它整合了多种不同类型的数据,为银行提供了一个综合的数据资源。通过分析这些数据,银行可以进行精准的市场定位,开发个性化的金融产品和服务,提高客户满意度和忠诚度。同时,它也有助于银行进行风险管理和合规检查,确保银行的稳健运营。总之,数据集是一个功能强大的工具,能够为银行的决策提供有力的数据支持。

2025-09-26

机器学习(预测模型):垃圾邮件分类数据集

数据集是一个用于垃圾邮件检测研究和实践的数据集,包含1000封电子邮件,每封邮件都被标记为垃圾邮件(spam)或正常邮件(ham)。它旨在用于文本分类和垃圾邮件检测实验。该数据集没有缺失值,每行代表一封邮件,包含两列:“email_text”是邮件的原始文本内容,“label”是邮件的类别(垃圾邮件或正常邮件)。它可用于训练和测试垃圾邮件分类器,练习文本预处理(如分词、去除停用词、TF-IDF、嵌入等),以及对机器学习模型(如朴素贝叶斯、逻辑回归、随机森林、深度学习模型等)进行基准测试。

2025-09-26

机器学习(预测模型):电子商务客户旅程点击到转化率数据集

该数据集包含一个名为customer_journey.csv的文件,每行代表用户在一次会话中的一个事件。一个SessionID可能有多个行,按时间顺序详细记录用户在会话中的路径。数据集是合成生成的,用于模拟真实世界的用户行为,是营销分析、用户行为建模和转化率优化的绝佳实践对象。 数据集特点 :数据集中的SessionID是每个用户会话的唯一标识符;UserID是每个用户的唯一标识符;Timestamp记录事件的日期和时间;PageType表示用户访问的页面类型,如首页、产品页、购物车页、结账页、确认页等;DeviceType记录会话所使用的设备类型,如桌面设备、移动设备、平板电脑等;Country表示用户所在的国家;ReferralSource是引导用户到该网站的来源,如谷歌、社交媒体、直接访问、电子邮件等;TimeOnPage_seconds是用户在特定页面上停留的时间(秒);ItemsInCart是事件发生时用户购物车中的商品数量;Purchased是目标变量,如果会话中发生了购买行为则为1,否则为0,且该值在给定SessionID的所有事件中保持一致。 潜在用途 :可用于构建模型预测Purchased变量,实现转化预测(分类);通过分析用户在不同阶段的流失率,进行漏斗分析(探索性数据分析);基于用户浏览行为,如将用户划分为“讨价还价者”“果断购买者”等不同群体,进行用户细分(聚类);还可使用序列模型(如LSTM)来预测用户下一步的行为,进行更高级的分析。

2025-09-26

机器学习(预测模型):3526款PlayStation游戏的详细信息数据集

数据集包含了3526款PlayStation游戏的详细信息,每款游戏有12个属性。具体包括游戏名称、最高价格(欧元)、发布日期、主要和次要类型、发行商、PlayStation平台(PS3、PS4、PS5)、Metacritic平均评分(0-100)、Metacritic评论数量、Metacritic用户平均评分(0-10)和用户评分数量。 数据集显示,价格方面,19.99欧元和14.99欧元是最常见的价格,分别占比16%和10%。游戏发布日期分布广泛,从1970年到2025年,其中2020年2月16日至2025年9月12日之间发布的游戏数量最多,达1691款。在游戏类型上,动作类游戏占比11%,而其他类型游戏占75%。发行商方面,索尼互动娱乐欧洲公司占比6%,世嘉欧洲公司占比3%,其他发行商占91%。平台分布上,PS4游戏占比48%,PS5/PS4游戏占比18%,其他平台游戏占34%。 评分方面,Metacritic平均评分集中在65.00到98.00之间,其中91.40到94.70的评分区间有32款游戏。用户平均评分主要在0.00到9.50之间,8.55到9.50的评分区间有94款游戏。评论数量方面,Metacritic评论数量分布较广,0到16595.90之间的评论数量最多,有872款游戏。 该数据集为研究人员和游戏爱好者提供了丰富的PlayStation游戏信息,可用于分析游戏市场趋势、玩家偏好、游戏质量评估等多个方面。

2025-09-26

机器学习(预测模型):专注于生菜健康状态分析的图像数据集

数据集是一个专注于生菜健康状态分析的图像数据集,该数据集包含了健康生菜与受胁迫生菜的图像,旨在通过视觉分析技术帮助研究人员和开发者更好地了解生菜的生长状况。 数据集的结构清晰,主要分为两个目录,分别存放健康生菜和受胁迫生菜的图像。这些图像涵盖了生菜在不同生长阶段和环境条件下的外观特征,为机器学习模型的训练提供了丰富的素材。数据集的总大小约为401.35MB,包含了大量的图像文件,这些图像可以用于开发图像识别算法,以自动区分生菜的健康状态。 该数据集采允许用户在遵守相应条款的前提下自由使用数据进行研究和开发。它适用于农业技术、植物生理学以及计算机视觉等多个领域的研究。通过这个数据集,研究人员可以开发出更高效的监测系统,以提高农业生产效率和作物质量。

2025-09-26

机器学习(预测模型):1960 - 2018年全球自然灾害数据集

是一个涵盖全球范围内自然灾害信息的数据集。它记录了从1960年到2018年期间发生的各种自然灾害事件,为研究自然灾害的分布、频率、影响等提供了宝贵的数据资源。 该数据集包含了多种类型的自然灾害,如地震、洪水、飓风、台风、干旱、滑坡、火山爆发等。每种灾害都有详细的记录,包括灾害发生的时间、地点(国家和具体地区)、灾害类型、受灾人数、死亡人数、经济损失等多个维度的信息。这些数据可以帮助研究人员分析不同地区自然灾害的特征和规律,例如哪些地区更容易遭受某种特定类型的灾害,灾害发生的季节性规律等。 数据集中的信息来源于多个权威渠道,经过整理和汇总后形成。它为从事自然灾害研究的学者、政府机构、非政府组织以及相关领域的专业人士提供了丰富的数据支持。通过分析这些数据,可以更好地了解自然灾害对人类社会和经济的影响,从而为灾害预防、应急响应和灾后恢复等工作提供科学依据。例如,研究人员可以利用这些数据建立灾害风险评估模型,预测未来可能发生的灾害及其潜在影响,以便提前采取措施减少灾害损失。同时,该数据集也为政策制定者提供了参考,帮助他们制定更有效的灾害管理政策和策略,以提高社会的抗灾能力和韧性。

2025-09-26

机器学习(预测模型):2025年至今的每小时金融市场数据集

数据集包含从2025年3月开始的金融市场的每小时数据。其收集流程设计巧妙,旨在展示实用的数据管理和自动化技能。 这个数据集可以用于多种用途,包括练习SQL查询以提取、过滤和准备分析前的数据;探索股票价格的波动;构建时间序列预测模型;研究全球资产之间的相关性;以及展示现实世界的ETL(提取、转换、加载)和数据管道工程。数据集每小时更新一次,适合实时监控和历史趋势分析。

2025-09-26

机器学习(预测模型):2025年TikTok平台上热门趋势的集合数据集

数据集是一个专注于记录和分析2025年TikTok平台上热门趋势的集合。它包含了大量与当年走红的各类趋势相关的信息,旨在帮助研究人员、内容创作者、市场营销人员以及对TikTok文化感兴趣的人士深入了解该年度TikTok上的热门现象。 该数据集可能涵盖了多个维度的内容。例如,它可能包括每个热门趋势的具体名称、起始时间、传播速度、参与用户数量、相关视频的平均点赞数、评论数和分享数等量化指标。这些数据能够直观地反映出每个趋势的热度和影响力。此外,数据集中还可能包含趋势所涉及的内容类型,如舞蹈挑战、音乐片段、特效使用、话题标签等分类信息,方便用户按类别进行分析和研究。 数据集的来源可能包括TikTok平台的公开数据、用户生成内容的分析以及社交媒体监测工具等。通过对这些数据的整合和整理,为用户提供了一个全面且具有研究价值的资源。它不仅可以帮助内容创作者把握当下流行趋势,为创作提供灵感,还能让市场营销人员了解哪些趋势能够有效吸引目标受众,从而制定更精准的营销策略。对于研究人员而言,该数据集更是研究社交媒体文化传播、用户行为模式以及平台算法影响等方面的宝贵资料。总之,“TikTok Viral Trends 2025”数据集是一个聚焦于2025年TikTok热门趋势的综合性资源,具有广泛的应用价值和研究意义。

2025-09-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除