自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

庄小焱

博主在支付交易领域,信贷金融领域深耕,我在博客中分享业务、技术、产品相关知识,欢迎大家和我交流学习。

  • 博客(1132)
  • 收藏
  • 关注

原创 庄小焱——博主个人介绍

我是庄小焱。曾任职于阿里巴巴,PMP项目管理专家、系统架构设计师(高级)、CSDN博文专家。 博主在支付交易领域,信贷金融领域深耕,我在博客中分享业务、技术、产品相关知识,欢迎大家和我交流学习。

2020-07-02 11:44:35 2306 2

原创 庄小焱——CSDN2025博客之星

大家好,我是庄小焱。在这篇 2025 年博文创作总结里,我完整回顾了个人成长、创作历程、生活与事业平衡的收获,以及 2026 年的发展规划。个人成长上,我重点分享了自己在金融专业领域与大数据、机器学习技术融合应用中取得的关键突破,最终形成 “金融业务 + 技术赋能” 的双向输出体系;创作领域里,我构建了体系化的博文创作框架,产出了一批兼具深度与实践价值的优质内容。值得欣喜的是,我实现了生活与事业的相互促进、协同发展。最后,我也详细规划了 2026 年的博文创作与个人成长路径,将延续 “金融业务 + AI 技

2025-12-28 09:31:20 395

原创 风控域——信贷风控知识图谱实战

本文深入探讨了信贷风控知识图谱的构建与实战应用。首先解析了风控域的业务流程,涵盖风控授信、反欺诈与反洗钱等业务。接着详细阐述了风控业务知识图谱系统的设计,包括授信、反欺诈与反洗钱知识图谱设计。重点介绍了风控域知识图谱构建流程,从业务需求定义到知识抽取、清洗、存储、查询设计,再到推理构建与可视化平台搭建,最后总结了知识图谱在风控领域的应用价值,如反欺诈、客户关系分析等,并探讨了图数据库在金融信贷领域的作用、知识图谱技术架构、应用场景、数据量级挑战、查询优化方法以及数据更新策略等关键问题。

2025-12-13 16:15:32 281

原创 风控域——知识图谱相关原理

本文全面介绍了知识图谱在风控领域的应用原理。从基础知识入手,阐述了知识图谱的定义、概念及应用场景,重点聚焦于金融风控。进一步讲解了知识图谱的技术架构,涵盖计算、融合与构建等方面。深入探讨了知识表示、建模、抽取、挖掘、存储、融合、检索和推理等关键技术原理,并结合金融风控实际需求,详细说明了各技术环节的具体应用方法与流程,为构建高效风控知识图谱提供了理论与实践指导。

2025-12-13 15:31:05 279

原创 大数据域——腾讯Topbase知识图谱系统设计

本文详细介绍了Topbase知识图谱的设计与构建过程。Topbase是一个涵盖226种概念类型、超1亿实体和22亿三元组的通用领域知识图谱,应用于微信搜一搜、信息流推荐和智能问答等。其构建过程包括知识体系构建、数据下载与抽取、知识规整与融合、知识推理、实体知名度计算及存储查询等环节,采用人工与自动挖掘相结合的方式,借鉴了多种现有知识体系资源。通过多策略的数据更新、抽取和规整,以及复杂的实体分类、对齐和融合方法,Topbase实现了高效的知识图谱构建与维护,为相关应用提供了强大的知识支持。

2025-11-30 21:31:18 699

原创 大数据存储域——图数据库系统

本文主要介绍了 JanusGraph 图数据库系统。阐述了其特点、优势、劣势以及与其他数据库的对比。还列举了影响其性能的关键因素,如后端数据库选择、索引设计等,并提供了企业使用 JanusGraph 的真实案例,如支付公司风控、银行反欺诈等场景,展示了其在不同场景下的数据量、查询延迟等指标。

2025-11-30 21:24:21 1242

原创 大数据治理域——数据资产管理示例

本文主要介绍了大数据治理域中的数据资产管理示例,涵盖了京东数科的数据资产管理实践、水利行业的数据治理模式、军政部门数据治理应用、政务大数据问题、医疗行业数据治理问题以及内某电器集团的数据治理案例。通过这些案例,展示了数据治理在不同领域的应用和价值,以及数据治理对于提升数据质量、保障数据安全、促进业务发展的重要作用。

2025-11-30 10:31:12 1606

原创 风控域——智能风控平台系统设计

本文全面深入地剖析了智能风控平台系统设计,涵盖智能风控业务背景、信贷业务应用、智能信贷风控业务以及智能风控平台核心系统设计等板块。智能风控业务依托互联网与科技发展,贯穿电商、娱乐、金融等多领域,其发展历经探索、试点、发展、成熟四阶段,消费金融机构包含商业银行、持牌公司及互联网平台三类。智能信贷业务应用聚焦产品工厂、客户管理等多模块,智能信贷风控业务涵盖生物识别、信用评估等技术,智能风控平台核心系统设计则围绕业务架构、功能架构、技术架构展开,各架构相互关联,共同推动信贷业务创新与风控升级。

2025-11-30 08:50:00 607

原创 风控域——风控与业务场景

本文主要介绍了风控基础知识以及风控在不同业务场景中的应用。首先对风险和风控进行了定义,阐述了风险的狭义和广义概念,以及风控在减少风险事件发生可能性和降低损失方面的作用。接着介绍了大数据风控、智能风控等概念,以及风控的目标、风险管理、风控三道防线等内容。最后详细探讨了风控在电商、支付、信贷、保险等业务场景中的应用。

2025-11-26 22:10:27 390

原创 大数据治理域——企业数据治理实战(2)

本文主要介绍了企业数据交换架构的技术实现,包括定义数据交换规则和搭建数据交换平台。重点阐述了固定资产数据交换流向,即资产系统作为数据源头,通过接口将数据录入数据治理平台,经质量验证后自动分发到ERP系统和财务共享系统,还提到了资产总账系统对接数据治理平台的数据交换规则。

2025-11-23 23:42:05 620

原创 大数据治理域——企业数据治理实战(1)

本文介绍了一套成熟、科学的企业数据治理方法论——“双311”数据治理方法论。该方法论包括一个平台(企业数据治理平台)、一个标准体系(数据管理体系为核心)、三大驱动因素(调研和咨询的主线)、三种清洗策略(针对历史数据)、统一数据交换以及一套知识体系。文章还明确了数据治理项目路线图,包括数据环境治理阶段和数据管理体系落地阶段,以及确定数据治理项目里程碑,整个计划包括7个里程碑。

2025-11-23 11:08:34 1493

原创 大数据治理域——数据治理实战经验总结

文章总结了大数据治理的实战经验,汇总了常见的数据问题,包括数据质量、数据安全、数据资产、数据模型等方面,并提出了体系化的治理方案,涵盖数据标准、质量、安全、资产、模型、流程、指标治理等。还给出了企业级数据治理实施路线,针对风控/消费金融业务的治理重点,以及基于机器学习的数据质量判断模型技术实现和数据治理平台功能标准。

2025-11-22 09:12:41 769

原创 大数据治理域——数据治理相关概念

本文主要介绍了企业数据治理的相关概念。随着企业信息化程度的提高,数据的有效统一管理变得至关重要。文章指出目前企业数据治理存在的问题,如数据整合难度大、规范性差等,并强调要明确数据治理目标,制定合理策略,监督过程并持续优化。同时,文章还对数据、元数据等进行了定义,并探讨了主数据管理的局限性、企业数据治理的模式、价值以及未来发展方向等内容。

2025-11-21 23:36:29 750

原创 支付域——支付系统实战经验总结

本文总结了支付系统实战经验,重点介绍了主备延数据库架构在支付、信贷和收单场景的应用,强调其保障数据一致性和安全的重要性。同时,分析了因Dubbo+ZK注册中心设计不当引发的系统级灾难,提出了避免此类事故的建议。

2025-11-17 10:00:00 58

原创 好书推荐——《一本书读懂支付》下

本文主要介绍了支付系统的功能设计、架构设计以及设计实战方面的内容。在功能设计方面,详细阐述了支付业务相关方及其在支付业务中的职责,包括付款人、收款人、银行(发卡行和收单行)、银行卡组织等。架构设计部分则涵盖了支付系统设计指标、架构设计以及相关子系统设计。设计实战方面,介绍了支付系统常用设计方法,如DDD领域驱动设计和有限状态机设计,以及支付核心与非核心链路的区分和同步转异步设计等内容。

2025-11-16 23:10:23 745

原创 好书推荐——《一本书读懂支付》上

本文全面介绍了支付领域的相关知识,包括支付概念、业务模式、工具、运营及监管等方面。首先阐述了支付与交易的关系,指出支付是交易的重要环节,包含签约、认证、交付、记录和支付五个要素。接着详细介绍了支付业务模式,如线下支付、线上支付、C2C支付、B2B支付等,并分析了支付业务流程,包括签约、申请、审核等环节。此外,还探讨了支付工具,如银行卡支付、扫码支付、生物特征支付等,以及支付运营和监管等内容。

2025-11-16 18:07:10 1351

原创 【2025软考高级架构师】——2024年11月架构真题解析

本文是一份关于2024年11月软件系统架构设计师考试的真题与解析资料,涵盖了综合知识、案例分析和论文写作三大部分。综合知识部分包含60道选择题,涉及信息安全、数据安全治理、软件维护、设计模式、数据库、网络等多个知识点,每题都配有详细解析。案例分析和论文写作部分则提供了具体的试题内容,但未给出详细答案或解析。整体而言,这份资料为备考者提供了丰富的练习和知识点解析,有助于其全面复习和深入理解相关概念

2025-11-07 22:02:40 2095

原创 【2025软考高级架构师】——2025年5月架构真题解析

本文是一份关于2025年5月软考高级架构师真题的解析资料。它详细介绍了考试中涉及的多个知识点,包括知识获取、管理、意图识别、知识检索、语句解析等关键环节。通过案例分析和论文真题解析,为考生提供了全面的复习指导,覆盖了软件测试、数据库、架构设计、开发技术等多个领域,帮助考生深入理解考试内容,掌握解题方法。

2025-11-01 15:41:37 1731

原创 权限管理域——RBAC模型权限系统设计

本文详细介绍了RBAC(基于角色的访问控制)权限模型的设计与应用。RBAC通过角色分配权限,简化了权限管理并提升了安全性。文章对比了RBAC与其他访问控制模型,阐述了其核心组成、工作流程、优势、应用场景以及面临的挑战与改进措施。同时,详细介绍了RBAC权限模型开发的关键步骤,包括梳理业务需求、设计角色-权限矩阵、权限继承与角色分组、持续维护与审计等。此外,还提供了RBAC权限模型的数据库设计,包括核心实体与关系、数据表结构设计、扩展功能设计以及最佳实践。

2025-10-24 22:11:08 1218

原创 大数据存储域——Kafka实战经验总结

本文总结了 Kafka 的实战经验,重点探讨了 Kafka 的分区副本机制、ISR 与非 ISR 节点的概念及作用、Leader 选举流程以及与 ZooKeeper 的关系等内容,旨在帮助读者深入理解 Kafka 的工作原理和高可用性保障机制,提升在大数据存储域中使用 Kafka 的能力。

2025-09-09 22:54:40 875

原创 大数据存储域——Kafka设计原理

本文主要介绍了Kafka的架构原理、消息订阅模式以及在金融风控等领域的应用。Kafka作为数据中转站,可同步不同系统数据,支持事件驱动架构,广泛应用于金融支付与风控场景。其架构包括Producer、Broker、Topic、Partition、Replication、Message、Consumer和Consumer Group等组件,依赖Zookeeper保存元信息。Kafka的消息订阅模式包括点对点、发布-订阅、分区级订阅、静态订阅和动态订阅等,每种模式都有其特点和适用场景。此外,还探讨了Kafka与R

2025-09-09 21:41:16 1041

原创 支付域——清结算域体系

本文深入探讨了支付域中的清结算概念,从清算、结算到清结算的本质、运营主体、职责、资金属性及所需资质等维度进行详细辨析。通过举例和类比生活场景,清晰阐释了三者的区别与联系。同时,对清结算域的体系、模式、相关方及场景进行了全面梳理,提出了金融和企业支付结算的差异性思考,为理解支付域中的清结算业务提供了系统性框架。

2025-09-07 11:08:08 413

原创 支付域——跨境支付(Alipay/Wechat)

本文深入探讨了全球跨境支付的背景、网络设计与合规设计,以及支付宝和微信支付的跨境支付体系。全球化与数字经济推动跨境支付需求激增,但传统体系存在效率低、成本高、合规复杂等问题。新兴技术如区块链和数字货币正在重塑跨境支付格局,各国也在探索构建自主跨境支付体系。支付宝和微信支付通过技术创新和网络拓展,正在改变跨境支付的生态。

2025-09-06 15:06:52 612

原创 支付域——支付与交易概念

本文详细阐述了支付域中支付与交易的核心概念及其相互关系。交易是商品或服务交换的过程,包含多个要素并产生订单或合同。支付则是资金流转的过程,是交易的资金结算环节。支付交易结合了两者,根据不同场景提供多样化的支付产品和服务。文中还探讨了支付过程、支付资金、支付场景、支付产品等多个方面,并分析了支付与交易在不同维度上的关联,强调了支付信息流中信息流、支付流和资金流的重要性。

2025-09-04 22:32:55 225

原创 信贷模型域——申请评分卡模型

本文主要介绍了信贷模型域中的申请评分卡模型。首先阐述了信用违约风险的概念、典型场景、分类以及衡量与管理方法。接着详细介绍了申请评分卡的重要性、定义、特征、现实应用场景以及流程。然后深入探讨了申请评分卡模型的入参问题,包括非平衡样本问题。在特征工程方面,详细讲解了构建信用风险类型的特征、特征的分箱、WOE编码、特征信息度的计算以及单变量/多变量分析。在模型算法选择上,介绍了逻辑回归、决策树及其扩展、随机森林/GBDT/XGBoost、神经网络等常见算法。最后,阐述了申请评分卡模型的评价标准,包括模型的区分度、

2025-08-30 09:37:08 473

原创 信贷模型域——清收阶段模型(贷后模型)

本文深入探讨了信贷模型域中的清收阶段模型(贷后模型),涵盖早期催收模型(C卡)、晚期催收模型、Best Time to Contact模型和回收模型。这些模型通过多维度数据输入,运用分类、回归和生存分析等建模方法,输出关键指标如还款概率、回收率等,广泛应用于银行、资产管理公司和催收外包公司,助力提升回款率、优化资源分配、降低催收成本,并融入贷后风控体系。

2025-08-25 23:49:11 367

原创 大数据治理域——离线数据开发

文本主要介绍了离线数据开发相关内容,包括业务与流程、阿里MaxCompute系统设计以及阿里调度系统设计。离线数据开发是大数据开发核心组成部分,用于处理批量数据,支持企业多种需求,其流程涵盖需求调研、数据源接入等环节。阿里MaxCompute系统架构与特点被阐述,调度系统背景及核心设计模型也进行了说明。

2025-08-25 23:21:47 1114

原创 信贷策略域——信贷产品策略设计

本文主要探讨了信贷策略域中的信贷产品策略设计,涵盖了信贷产品生命周期管理、个人消费信贷产品设计、小企业经营性信贷产品设计以及中小企业供应链信贷产品设计等内容。文章详细阐述了信贷产品生命周期的四个阶段及其特点,并针对不同阶段的产品提出了相应的措施建议。在小企业经营性信贷产品设计部分,重点介绍了模型构建、指标设计、策略设计以及授信审批框架与流程,强调了通过多种数据衡量小微客户收入的重要性以及小企业经营性贷款模型在控制信贷风险、提升审批通过率方面的作用。

2025-08-24 21:02:39 613

原创 风控域——美团点评业务风控系统设计

美团点评业务风控系统设计文章主要探讨了美团在业务快速发展过程中,如何应对复杂多变的风控挑战。文章详细介绍了风控系统的全景,包括高效的规则引擎设计、风控域的挑战与解决方案,以及未来发展方向和美团在风控方面的深入思考。通过不断优化系统架构和产品功能,美团致力于实现高聚合架构上的低耦合,平衡系统复杂度与业务需求,并通过“防呆”设计降低风险。

2025-08-24 15:27:23 2532

原创 信贷模型域——客户管理阶段模型(贷中模型)

本文主要探讨了信贷模型域中的客户管理阶段模型,重点聚焦于交叉销售模型。交叉销售模型不仅应用于贷中阶段,还贯穿于贷前、贷中、贷后全过程,其核心作用在于提升客户价值、增强客户粘性、降低流失率以及实现风险与收益的平衡。文中通过具体案例展示了交叉销售模型在现实业务中的应用,并指出其在贷中阶段的主要任务是提升存量客户价值、增加产品使用率,同时有效控制风险。

2025-08-24 14:48:59 1484

原创 信贷模型域——催收电联模型实战

本文主要介绍了信贷催收电联模型的实践过程。从催收业务背景出发,阐述了催收行业的现状、法律政策影响、技术推动、社会争议以及面临的挑战和未来趋势。随后详细介绍了催收方案的设计,重点聚焦于基于机器学习的电联模型实践,包括数据分析与客户分群、特征加工与选取、模型选择对比、训练效果评估以及线上AB测试等关键环节。通过这些步骤,实现了从数据到模型再到落地的完整闭环,旨在持续提升催收效率。此外,还探讨了催收电联模型相关问题,如客户分类、数据来源、特征加工、模型学习起点、优化迭代、上线流程以及关键注意事项等。

2025-08-24 10:37:34 633

原创 信贷模型域——信贷准入与的授信模型(贷前模型)

本文主要介绍了信贷模型域中的贷前模型,包括申请评分模型(A卡)、申请欺诈模型(F卡)和初始额度辅助策略模型(L卡)。A卡用于评估信用违约风险,F卡着重识别欺诈风险,L卡则负责在客户获批后给出合理授信额度建议。这些模型在信贷风控流程中依次发挥作用,通过不同输入特征、建模方法和决策方式,实现风险控制与客户体验的平衡。

2025-08-24 09:40:32 1351

原创 信贷模型域——信贷获客模型(获客模型)

本文深入探讨了信贷模型域中的信贷获客模型,包括风险预筛选模型、响应模型和渠道分析模型。风险预筛选模型在用户进入完整风控流程前快速拦截高风险申请,降低成本、提升效率并降低风险敞口。响应模型预测潜在用户对营销触达的积极响应概率,优化营销资源分配,提高转化率并降低成本。渠道分析模型衡量不同获客渠道的质量、成本、转化率和风险表现,帮助信贷公司找到高质量、低风险、成本可控的渠道,并对投放和流量分配进行优化。

2025-08-23 21:30:33 1782

原创 定时任务——ElasticJob原理

文章主要介绍了ElasticJob的原理和源码解析。ElasticJob是一个分布式任务调度框架,使用Zookeeper作为协调器,支持任务分片和分布式锁机制。文章还探讨了ElasticJob的作业流程、任务分配、Leader选举、任务触发和执行机制,以及如何在Spring Boot中使用ElasticJob。

2025-08-23 10:32:36 1314

原创 支付域——支付计费系统设计

本文深入探讨了支付计费系统的设计与管理。支付计费系统因行业多通道支付发展、商业模式驱动和合规监管需求而产生,其核心目标是自动化、灵活化地完成费用计算与分润,提升透明度和效率。系统设计涉及计费因子、计价方式、计费模型、计费公式、结算规则等多个方面,需满足商户计费、用户计费、渠道计费等多种场景需求。计费规则管理包括银行协议与接口、计费规则条目、划付与划付规则等。计费业务全流程涵盖支付订单生成、计费系统计算、清结算系统处理等环节。支付计费系统与信贷利率计算服务虽有相似之处,但在业务模型、规则来源、计算结果等方面存

2025-08-17 15:48:35 650

原创 支付域——支付路由引擎设计

本文深入探讨了支付路由引擎的设计与管理。支付路由引擎作为支付通道智能选择和路由的中枢系统,根据多种因素选择最优支付通道。其应用场景广泛,包括跨境支付、多渠道支付、高并发支付场景等。支付路由引擎的作用涵盖通道选择、成本优化、成功率优化等多个方面。文章还详细介绍了支付路由的分类、模型设计、核心设计以及技术实现等内容,旨在提升支付系统的灵活性与可扩展性。

2025-08-17 00:16:45 537

原创 系统设计——DDD领域模型驱动实践

本文主要介绍了DDD(领域驱动设计)在系统设计中的实践应用,包括其在编码规范、分层架构设计等方面的具体要求和建议。重点强调了应用层的命名规范,如避免使用模糊的Handler、Processor等命名,推荐使用动词加业务动作的清晰命名方式;区分命令和查询服务的命名规则;以及Repository层和防腐层的设计原则。此外,还探讨了DDD的价值和在实际系统中的应用思考。

2025-08-14 23:04:18 1010

原创 支付域——账户系统设计

本文详细介绍了支付域中的账户系统设计,包括账户的定义、核心特征、常见类型以及在支付系统中的作用。账户是支付平台为用户、商户等主体建立的资金记录单元,具有资金归属、余额管理、交易流水、资金安全等核心特征。常见账户类型包括用户账户、商户账户、平台账户、保证金账户等。此外,还探讨了账户与银行账户的区别、账户的结构设计、如何设计账户类型以及账户系统设计等内容。

2025-08-14 22:56:31 897

原创 Spring——Spring懒加载设计使用场景

本文主要探讨了Spring框架中懒加载机制的设计使用场景。首先解释了懒加载的定义,然后对比了懒加载和初始化加载的区别,包括初始化时机、启动速度、运行性能、资源占用、典型应用场景和实现方式等方面。接着分析了懒加载与启动时初始化在不同维度的对比,如启动时间、首次访问性能、系统运行稳定性、资源占用、复杂度和开发体验等,并给出了在后端风控系统中的建议实践,包括不同组件类型的推荐加载方式及原因。最后针对风控场景提出了使用建议。

2025-08-09 15:15:28 936

原创 大数据存储域——Hive数据仓库工具

Hive是一个构建在Hadoop之上的数据仓库工具,本质上是SQL到MapReduce的转换器,适合海量数据的批处理查询。与传统数据库相比,它存储在HDFS上,计算执行依赖MapReduce等,不支持实时操作和完整事务。其架构包括JDBC/ODBC接口、Thrift Server、Web界面、命令行界面、驱动器、解析器、任务计划器、元数据存储、执行器、优化器等组件。Hive的元数据存储可选择外部数据库(推荐MySQL/PostgreSQL)或本地嵌入式数据库。执行引擎可选MapReduce、Tez、Spar

2025-08-06 23:37:49 874 1

机器学习(金融预测模型):全面记录去中心化金融生态系统演变的数据集

数据集是一个全面记录去中心化金融(DeFi)生态系统演变的数据集。该数据集涵盖了从2020年3月到2025年8月,共计283周的详细网络数据,捕捉了DeFi协议、代币关系以及网络动态在过去5年多的市场发展中的变化。 数据集的主要内容包括以下几个文件: historical-network_week_2020-03-30.json (1.0GB):这是主要的数据文件,包含了每周的网络快照,记录了DeFi网络在不同时间点的状态。 id_to_info.json:该文件提供了协议和实体的元数据映射,帮助用户理解数据集中各个标识符所对应的详细信息。 rev_map.json:这是一个反向映射文件,用于描述数据之间的关系,便于用户从不同角度分析数据。 token_to_protocol.json:记录了代币与协议之间的关联关系,这对于研究代币在不同协议中的使用和流动具有重要意义。 这个数据集为研究人员、开发者和市场分析师提供了一个宝贵的资源,可用于分析DeFi市场的趋势、评估协议的性能、研究代币的动态以及探索网络的整体结构和发展。通过这些详细的数据,用户可以深入了解DeFi生态系统的复杂性和动态性,为相关领域的研究和应用提供坚实的数据支持。

2025-12-06

机器学习(分类模型):1000种药物及其副作用的全面数据集

数据集是一个包含1000种药物及其副作用的全面数据集,为机器学习和健康研究提供了丰富的信息资源。 该数据集涵盖了多种药物类型,从常见的感冒药、止痛药到特定的处方药等,每种药物都详细记录了其名称、成分、用途等基本信息。更重要的是,它详细列出了每种药物可能产生的副作用,这些副作用包括轻微的如头晕、恶心,到较为严重的如心脏问题、过敏反应等,为研究人员提供了全面的药物安全信息。 在机器学习领域,此数据集可用于训练模型,以预测药物副作用,帮助医生和药师更好地评估药物风险。在健康研究方面,它有助于分析药物副作用的模式和趋势,为药物研发和临床应用提供数据支持。此外,数据集的结构清晰,易于处理和分析,适合不同层次的研究人员使用。 总之,这个数据集是药物研究和机器学习领域的一个宝贵资源,有助于推动相关领域的研究进展,提高药物使用的安全性和有效性。

2025-12-06

机器学习(预测模型):全球性别平等数据集

在全球范围内,性别平等问题一直是社会关注的焦点。为了更全面地了解和推动性别平等,全球性别平等数据集应运而生。这一数据集涵盖了超过200个国家和地区,时间跨度从1960年一直到2024年,为研究人员、政策制定者以及社会各界提供了一个极为宝贵的资源。 数据集整合了来自世界银行的真实数据,涵盖了多个关键领域。在经济领域,它追踪了女性的劳动力参与率和失业率,这些数据能够直观地反映出女性在经济活动中的参与程度以及面临的就业挑战。教育方面,数据集提供了女性的受教育水平和机会,这对于理解性别在知识获取和职业发展上的差距至关重要。法律权利和社会机会也是数据集关注的重点,它记录了女性在法律保障、社会参与以及获得资源等方面的情况,这些因素直接影响着女性的社会地位和生活质量。 全球性别平等数据集的价值不仅在于其丰富的数据内容,更在于其强大的分析功能。通过跨国比较,研究人员可以清晰地看到不同国家和地区在性别平等方面的优势和不足,从而为政策制定提供有针对性的建议。同时,历史数据分析功能使得人们能够追踪性别平等问题的发展趋势,了解在过去的几十年中取得了哪些进步,还存在哪些亟待解决的问题。 性别平等是衡量社会进步的重要指标之一,而全球性别平等数据集为我们提供了一个全面、客观的视角来观察和分析这一问题。它不仅有助于揭示性别不平等的现状,更为推动全球性别平等的实现提供了有力的支持。

2025-12-06

机器学习(预测模型):全球1980-2030年度GDP增长数据集

该数据集专注于呈现“年度GDP增长”相关数据,为研究全球经济动态提供了宝贵资源。数据集涵盖了从1980年至2025年的时间跨度,以年度百分比变化的形式,展示了各国国内生产总值的增长情况,并且已经针对通货膨胀进行了调整,使得数据更具可比性和准确性。 值得注意的是,Our World in Data并非这些数据的原始生产者,其数据大多来源于其他机构。在使用该数据集时,使用者需自行确保遵守数据来源的许可规定,并正确地为数据来源方署名。此外,一个时间序列可能有多个来源,例如在不同时间段拼接不同生产者的数据,或者结合第二个来源的人口数据来计算人均指标等情况。 为了便于使用和呈现,Our World in Data会对原始数据进行一系列处理,包括标准化国家名称和世界区域定义、转换单位、计算衍生指标以及添加或修改元数据等。这些处理步骤有助于提升数据的可用性和一致性,使其能够更好地服务于全球范围内的研究人员、政策制定者以及对经济数据感兴趣的普通用户。

2025-12-06

机器学习(预测模型);2025年的GitHub热门仓库数据集

数据集是一个专注于收集和整理 GitHub 上热门仓库信息的数据集。该数据集于 2025 年 12 月从 GitHub 官方趋势页面抓取了 1500 多个热门仓库的数据,涵盖了 30 多种编程语言,包括 Python、JavaScript、TypeScript、Go、Rust、Java、C++ 等。 数据集提供了多个时间范围的趋势信息,包括每日、每周和每月的趋势,能够帮助用户了解不同时间段内热门仓库的变化情况。每个仓库的数据都包含了丰富的指标,如星标数(Stars)、分叉数(forks)、贡献者数量(contributors)和仓库描述(descriptions)。这些指标为开发者和研究人员提供了全面的参考,有助于评估仓库的受欢迎程度和活跃度。 此外,数据集还对仓库的所有者进行了分析,列出了最活跃的开发者和组织。这不仅有助于了解哪些个人和团队在开源社区中具有较高的影响力,还能为开发者寻找合作机会提供线索。 数据集是一个宝贵的资源,对于希望了解开源项目趋势、寻找热门技术方向或评估特定编程语言生态的开发者和研究人员来说,具有重要的参考价值。

2025-12-06

机器学习(金融预测模型):Yahoo 股票数据集

本数据集提供了 Yahoo 公司股票在特定时间段内的详细交易记录,旨在为金融分析、机器学习建模和投资策略研究提供数据支持。数据集涵盖了从 [具体起始日期] 至 [具体结束日期] 的每日股票交易数据,包括开盘价、收盘价、最高价、最低价、交易量等关键指标。这些数据能够帮助研究者和投资者了解 Yahoo 股票的价格波动趋势以及市场的交易活跃度。 数据集还可能包含一些额外的财务指标,如市盈率、市净率等,这些指标有助于更全面地评估公司的财务状况和投资价值。此外,数据集中可能还记录了一些与 Yahoo 公司相关的重大事件日期,如财报发布日、重大新闻事件等,这些事件往往会对股票价格产生显著影响,是进行事件驱动投资策略研究的重要参考。 本数据集适用于多种应用场景。对于金融分析师而言,可以通过对历史数据的分析,预测股票价格的未来走势,为投资决策提供依据。对于机器学习研究者来说,可以利用这些数据训练预测模型,探索股票价格与各种因素之间的关系。同时,数据集也为学术研究提供了丰富的素材,可用于研究金融市场行为、投资策略有效性等课题。

2025-12-06

机器学习(金融模型):金融市场趋势和外部因素的数据集

是一个综合性极强的数据集,它涵盖了市场趋势和外部因素的多方面信息。该数据集拥有3万行数据,内容丰富多样,为研究人员和分析师提供了宝贵的数据资源。 在市场趋势方面,数据集详细记录了市场价格的波动情况。这包括不同时间点的资产价格,如股票、期货、外汇等,这些价格数据能够帮助用户了解市场的整体走势和资产的价值变化。通过分析这些价格数据,可以发现市场的短期波动和长期趋势,为投资决策提供依据。 数据集还包含了波动性指标。波动性是衡量市场风险的重要因素,它反映了市场价格的不稳定程度。高波动性意味着价格在短时间内可能会出现较大的涨跌,这对于风险偏好不同的投资者来说具有不同的意义。通过研究波动性数据,可以更好地评估市场的风险水平,制定相应的风险管理策略。 此外,数据集还涵盖了市场情绪。市场情绪是指投资者对市场的整体态度和预期,它受到多种因素的影响,如经济数据发布、政策变动、突发事件等。市场情绪的变化会影响投资者的交易行为,进而影响市场价格。通过分析市场情绪数据,可以更好地理解市场参与者的行为模式,预测市场的短期波动。 除了市场趋势和情绪等内部因素,该数据集还考虑了外部因素。这些外部因素可能包括宏观经济数据、行业动态、政策法规变化等。这些因素对市场有着深远的影响,它们可以改变市场的供需关系、投资者的风险偏好和市场预期。通过整合这些外部因素数据,用户可以更全面地分析市场,了解市场变化的深层次原因。 总的来说,数据集是一个功能强大的工具,它为金融分析、投资决策、风险管理等领域提供了丰富的数据支持。无论是专业的金融分析师、数据科学家,还是对市场感兴趣的个人投资者,都可以从这个数据集中获取有价值的信息,帮助他们更好地理解和应对复杂多变的市场环境。

2025-12-06

机器学习(金融模型):2025年上半年的标普500股票数据集

数据集它涵盖了2025年上半年标普500指数成分股公司的股票市场数据。标普500指数是全球最重要的股票指数之一,包含了美国500家大型上市公司,这些公司来自不同行业,如科技、金融、医疗等,该指数反映了美国股市的整体表现,也是全球投资者关注的焦点之一。 这个数据集可能包含以下内容: 股票价格:包括开盘价、收盘价、最高价和最低价等,这些价格数据可以帮助分析股票在上半年的走势和波动情况。 交易量:显示了每只股票在不同时间点的交易量,交易量的大小可以反映市场对该股票的关注程度和交易活跃度。 公司信息:可能包含公司的名称、行业分类、市值等基本信息,这些信息有助于了解每只股票的背景和所属行业的发展趋势。 财务指标:如市盈率、市净率等,这些指标可以为投资者提供公司估值的参考,帮助评估股票的合理价格区间。 其他市场数据:可能还包括股息率、股票分割等信息,这些数据对于分析公司的股息政策和股票结构变化等具有重要意义。 该数据集对于投资者、金融分析师、数据科学家和学术研究人员来说都非常有价值。投资者可以利用这些数据来分析股票的走势,制定投资策略;金融分析师可以进行市场趋势研究和行业比较分析;数据科学家可以使用这些数据进行机器学习模型的训练和预测;学术研究人员则可以研究市场行为和经济理论。不过,需要注意的是,股票市场数据会受到多种因素的影响,包括宏观经济环境、公司业绩、政策变化等,因此在使用数据集进行分析时,还需要结合其他相关信息综合考虑。

2025-12-06

机器学习(预测模型):加拿大卡尔加里地区2019 - 2024年书店财务的数据集

这个数据集是一个中等规模加拿大书店业务的综合数据集,涵盖了2019年至2024年期间的详细运营情况。书店在卡尔加里拥有三个零售地点,分别位于市中心(Downtown)、西北(NW)和东南(SE),并配备了一个中央仓库,以支持日常运营和库存管理。 数据集的时间跨度长达六年,完整地记录了书店在不同经济环境下的经营状况。特别值得注意的是,它包含了COVID-19疫情对业务产生的影响(2020-2021年),以及疫情后经济复苏阶段书店如何适应通货膨胀并实现增长的过程。这使得该数据集成为研究企业在重大外部冲击下的应对策略和恢复能力的宝贵资源。 数据集整合了财务、运营、人力资源和客户分析等多个维度的信息。财务数据能够帮助分析书店的收入、成本和利润等关键指标;运营数据则涵盖了库存管理、供应链效率和销售流程等方面;人力资源数据提供了员工数量、薪酬和培训等信息;客户分析数据则有助于了解顾客行为、偏好和忠诚度。这些丰富的数据内容为数据分析师和研究人员提供了广泛的研究方向和应用场景。 无论是进行特定的关键绩效指标(KPI)跟踪,还是开展现实主义的簿记模拟项目,这个数据集都能提供详实且多维度的数据支持。对于那些希望深入了解零售行业在复杂经济环境下如何保持竞争力和实现可持续发展的研究者来说,这是一个极具价值的数据集。

2025-12-06

机器学习(预测模型):机器学习运维(MLOps)设计的实验跟踪数据集

这个数据集是一个专门为机器学习运维(MLOps)设计的实验跟踪数据集,它包含了一个紧凑的、合成的实验跟踪表,涵盖了100次机器学习训练运行的详细信息。该数据集的主要特点是它提供了一个干净、可以直接使用的机器学习实验元数据表,这在大多数公开数据集中是很少见的。 数据集中的元数据包括模型类型、超参数设置、性能指标、硬件配置以及运行环境等关键信息。这些信息被整合在一个表格中,方便用户快速获取和分析。由于它不包含任何原始的图像、文本或音频数据,仅提供实验级别的元数据,因此它非常适合用于快速原型开发和概念验证。 这个数据集可以用于多种场景,包括开发实验跟踪仪表板、设计模型选择逻辑、进行超参数搜索分析,以及用于MLOps教育和面试。它为研究人员和开发者提供了一个理想的工具,用于测试和改进他们的MLOps工作流程,而无需从头开始收集和整理实验数据。通过使用这个数据集,用户可以更高效地进行实验跟踪和分析,从而提高机器学习项目的整体效率和成功率。

2025-12-06

机器学习(预测模型):探索社交网络广告数据集

数据集是一个专注于分析用户在社交网络广告影响下的购买行为的数据集。它包含400个样本,每个样本有3个特征:年龄(Age)、预估薪资(EstimatedSalary)和购买行为(Purchased)。年龄和预估薪资是用户的基本信息,而购买行为是一个二分类目标变量,表示用户是否在看到广告后购买了产品。 该数据集以CSV格式存储,文件大小为4.9KB,数据集中年龄的范围从18岁到60岁,预估薪资从15000到150000,覆盖了不同年龄段和收入水平的用户群体。购买行为分为0(未购买)和1(购买),通过这个目标变量可以研究用户购买行为与年龄和薪资之间的关系。 数据集的统计信息显示,年龄和预估薪资被分成了多个区间,每个区间都有相应的样本数量。例如,年龄在18.00到22.20之间的有28人,预估薪资在15000.00到28500.00之间的有51人。此外,数据集中未购买产品的用户有257人,购买产品的用户有143人。这些统计信息为数据的初步分析提供了基础。 数据集的样本数据也展示了具体的用户信息,如一位25岁、预估薪资为33000的人未购买产品,而一位45岁、预估薪资为26000的人购买了产品。这些样本数据可以帮助研究人员和数据分析师更好地理解数据的结构和分布。 总体而言,数据集是一个适合用于数据挖掘、机器学习和数据分析的资源,可以帮助研究用户在社交网络广告影响下的购买决策过程。

2025-11-29

机器学习(预测模型):YouTube 视频推荐数据集

YouTube 推荐数据集是一个专为数据清理与机器学习研究而设计的合成数据集。它模拟了 YouTube 视频推荐系统中的用户行为和视频特征等信息,旨在为研究人员和开发者提供一个用于测试和改进推荐算法的实验平台。 该数据集包含 100 万行数据,涵盖了多种与视频推荐相关的维度。其中,用户特征部分可能包括用户的年龄、性别、地域、观看历史等信息,这些特征能够帮助算法理解用户的偏好和行为模式。视频特征则可能涉及视频的类别、时长、上传时间、点赞数、评论数等,这些信息对于评估视频的受欢迎程度和相关性至关重要。此外,数据集中还可能包含了用户与视频之间的交互记录,如用户是否观看了某视频、观看时长、是否点赞或评论等,这些交互数据是推荐算法学习用户偏好的重要依据。 然而,值得注意的是,这个数据集是合成的,并且故意包含了一些错误。这些错误可能是数据格式不一致、缺失值、错误的标签或者不合理的数值等。这样的设计是为了让使用者能够练习数据清理的技能,因为在实际的数据分析和机器学习项目中,数据往往不是完美的,需要经过仔细的预处理才能用于模型训练。通过处理这些错误,使用者可以更好地理解数据质量问题对模型性能的影响,以及如何采取有效的策略来解决这些问题。 尽管数据集是合成的,但它仍然能够为研究推荐系统算法提供有价值的参考。通过对这个数据集的分析和建模,研究人员可以探索不同的推荐算法,如基于内容的推荐、协同过滤、深度学习等方法,并比较它们在处理合成数据时的性能表现。此外,该数据集还可以用于教学目的,帮助学生和初学者熟悉数据处理、机器学习建模以及推荐系统的基本概念和流程。 总之,YouTube 推荐数据集是一个具有挑战性和实用性的资源,它为数据科学和机器学习领域的研究者和实践者提供了一个锻炼技能和探索新方法的机会,有助于推动推荐系统技术的发展和应用。

2025-11-29

机器学习(预测模型);推特关于美国航空公司的推文数据集

在当今数字化时代,社交媒体平台如 Twitter 成为了人们表达观点和情感的重要渠道。对于航空公司而言,了解乘客在 Twitter 上的反馈至关重要。这不仅有助于提升服务质量,还能及时发现潜在问题。数据集正是为满足这一需求而生。 数据集概述:该数据集收集了大量与航空公司相关的 Twitter 推文。这些推文涵盖了各种话题,从航班体验、服务质量到机场设施等。数据集的规模庞大,包含了数万条推文,为研究人员和数据分析师提供了丰富的素材。 数据清洗与整理:为了确保数据的质量和可用性,数据集经过了严格的清洗和整理。这包括去除无关的推文、修正拼写错误、统一文本格式等。清洗后的数据更加整洁,便于进行后续的分析工作。 应用场景:数据集在自然语言处理(NLP)领域有着广泛的应用。其中最典型的是情感分析。通过分析推文中的情感倾向,航空公司可以了解乘客的满意度,及时发现潜在问题并采取措施。此外,数据集还可用于异常检测,帮助航空公司发现异常的负面情绪爆发,以便快速响应。 数据集特点 该数据集具有以下特点: 多样性:涵盖了多种航空公司和不同类型的推文。 高质量:经过清洗和整理,数据质量高,适合多种分析任务。 实用性:可以直接应用于情感分析、异常检测等实际问题。 总结:数据集是一个极具价值的数据集。它为航空公司提供了深入了解乘客反馈的机会,也为自然语言处理的研究提供了丰富的素材。无论是用于情感分析还是异常检测,这个数据集都能发挥重要作用,帮助航空公司提升服务质量,增强乘客满意度。

2025-11-29

机器学习(预测模型):高端手表的数据集

是一个专注于高端手表领域的数据集,它为研究人员和数据爱好者提供了丰富的信息。该数据集包含了1,670块土耳其的奢侈手表,这些手表来自22个不同的品牌,涵盖了从经典到现代的多种风格和设计。每个品牌都有其独特的特点和市场定位,这使得数据集具有广泛的代表性。 数据集中的每个手表都经过了详细的特征提取和优化,共包含42个特征。这些特征不仅包括基本的物理属性,如尺寸、重量、材质等,还涵盖了更复杂的技术参数,如机芯类型、防水深度、功能等。此外,数据集中还可能包含一些与市场和消费者行为相关的特征,如价格、销售数据、用户评价等。这些丰富的特征为数据分析和机器学习提供了坚实的基础。 该数据集的创建旨在帮助研究人员和开发者更好地理解和分析高端手表市场。通过这些数据,人们可以进行多种类型的研究和分析。例如,可以使用机器学习算法来预测手表的价格,或者分析不同品牌和特征之间的关系。此外,该数据集还可以用于市场趋势分析、消费者行为研究以及产品设计优化等多个领域。 总之,数据集是一个高质量、高价值的数据集,它为高端手表领域的研究和分析提供了丰富的资源。通过这个数据集,研究人员可以深入了解高端手表市场的各个方面,从而为相关领域的研究和开发提供有力的支持。

2025-11-29

机器学习(预测模型):DNA结合蛋白基准数据集

这是一个专门用于研究DNA结合蛋白的数据集,它可能包含了大量已知的DNA结合蛋白的序列、结构等信息,这些信息被整理成一个基准数据集,用于评估和比较不同算法或模型在预测DNA结合蛋白方面的性能。 “Train/Test FASTA for DNA-binding protein prediction”(用于DNA结合蛋白预测的训练/测试FASTA文件),FASTA是一种用于表示生物序列(如蛋白质序列或核酸序列)的文件格式。这里提到的训练和测试FASTA文件,是指将数据集中的序列信息分别整理成用于训练模型的训练集FASTA文件和用于测试模型性能的测试集FASTA文件。通过使用这些文件,研究人员可以训练出能够预测蛋白质是否具有DNA结合能力的模型,并在测试集上评估模型的准确性和可靠性。

2025-11-29

机器学习(NLP模型):Reddit 情感分析数据集

在自然语言处理(NLP)领域,情感分析是一项极具应用价值的任务,而高质量的数据集是开展相关研究与项目实践的关键基础。今天要介绍的 “Reddit 情感分析数据集”,就是为 NLP 项目量身打造的优质资源。 Reddit 是一个汇聚了海量用户生成内容的社交平台,用户们在各个子版块(subreddit)中分享和讨论各种话题,从新闻、娱乐到专业知识等应有尽有。这个数据集从中精心挑选了简短的 Reddit 帖子,这些帖子的文本长度适中,既能够充分表达用户的观点和情感,又便于模型快速处理和分析,符合许多 NLP 项目对于数据规模和处理效率的平衡需求。 最为关键的是,这些帖子已经完成了情感标注工作。情感标注是情感分析数据集的核心要素,它为模型训练提供了明确的 “答案”。标注团队依据一定的标注规范,仔细阅读每篇帖子,判断其情感倾向是积极的、消极的还是中性的。这种人工标注的过程虽然耗时耗力,但却能确保标注结果的准确性和可靠性,让模型能够在有监督的学习环境中,精准地学习到不同文本特征与情感类别之间的对应关系。 对于从事 NLP 项目的研究人员和开发者来说,这个数据集就像是一个 “宝藏”。它可以用于训练情感分析模型,帮助模型更好地理解自然语言中的情感表达模式,从而在实际应用中准确地对新的文本数据进行情感判断。无论是社交媒体舆情监测、产品评论分析,还是客户服务反馈处理等场景,经过该数据集训练的模型都能够发挥重要作用,为相关业务提供有力支持,助力项目取得成功。

2025-11-29

机器学习(预测模型):健身品牌对于个性化服务用户画像数据集

在当今健身行业蓬勃发展的时代,个性化服务已成为品牌吸引用户的关键。FitLife 用户画像数据集应运而生,它为健身领域的研究与开发提供了极具价值的资源,紧密贴合专业健身教练应用和健康平台所收集的信息。 该数据集涵盖了丰富多样的用户信息,包括用户的性别、年龄、身高、体重等基本生理特征,这些数据是构建个性化健身计划的基础。同时,还记录了用户的健身目标,如减脂、增肌、塑形等,以及他们每周可分配的健身时间,这对于合理安排健身计划至关重要。此外,数据集中还包含了用户对不同健身课程的偏好,如瑜伽、有氧运动、力量训练等,以及他们对健身的热衷程度,从新手到资深健身爱好者不等,还有用户在健身时的饮食限制等个性化信息。 这些数据能够支持多方面的研究与开发工作。在健身计划制定算法方面,可以依据用户的具体信息生成专属的健身方案;对于 AI 驱动的健身指导和虚拟教练,能够提供精准的个性化辅导;还能构建个性化的健身推荐系统,为用户推荐合适的健身课程和项目。此外,通过对用户健康行为的建模,可以更好地预测用户需求,实现用户细分,开展针对性的健身项目,以及开发每周健身计划安排引擎,确保用户能够规律且有效地进行锻炼。 FitLife 用户画像数据集为健身行业的研究者和开发者提供了一个强大的工具,助力他们深入探索个性化健身服务的奥秘,推动健身行业向更加精准、高效、个性化的方向发展,为用户提供更优质、更贴心的健身体验。

2025-11-29

机器学习(预测模型):全球电子游戏销售数据集

在当今数字化时代,电子游戏产业蓬勃发展,其市场规模庞大且影响力广泛。为了深入探究这一领域,一款极具价值的数据集应运而生——全球电子游戏销售数据集。该数据集为研究者、行业从业者以及对电子游戏市场感兴趣的各界人士提供了一份详尽且全面的资料,是了解全球电子游戏产业动态的绝佳工具。 数据集涵盖了超过45000款电子游戏,这些游戏横跨多种主流平台,包括PC、PlayStation、Xbox以及任天堂旗下的各类游戏主机。从经典老游戏到最新的热门大作,从独立制作的小众游戏到全球知名的3A大作,几乎无所不包。每一条游戏记录都包含丰富而关键的信息,游戏名称、发行平台、发行年份、游戏类型、发行商等基础信息一应俱全,这些信息为用户构建起了对游戏本身的基本认知框架。 更为重要的是,该数据集还详细记录了每款游戏在不同地区的销售数据,包括北美、欧洲、日本以及其他地区,同时给出了全球总销售额。这些销售数据是理解游戏市场表现的核心,通过它们,用户能够直观地看到哪些游戏在哪些地区更受欢迎,哪些游戏能够在全球范围内获得巨大成功,从而洞察不同地区玩家的偏好差异以及游戏市场的地域性特点。 对于数据分析人员来说,这份数据集无疑是开展相关研究的宝藏。它可以用于分析电子游戏的销售趋势,无论是按年份观察市场的发展脉络,还是按平台比较不同硬件生态下的游戏销售情况,亦或是按地区研究不同文化背景对游戏接受度的影响,亦或是按类型探究各类游戏的市场生命周期,都能够提供有力的数据支持。此外,通过对比不同发行商的游戏销售数据,还能评估各发行商在市场中的影响力和竞争力,了解它们的市场策略以及产品布局对销售成绩的影响。 在机器学习领域,该数据集可用于构建预测模型,预测新游戏的销售潜力,为游戏开发和发行提供决策参考。在商业智能方面,企业可以利用它来制定市场策略,优化产品线,更好地满足市场需求。

2025-11-29

机器学习(预测模型);837条物流配送信息的数据集

这是一个涵盖物流配送信息的数据集,包含837条记录,涉及Delhivery、FedEx、DHL、Blue Dart、Amazon Logistics等多个物流合作伙伴的包裹配送情况。数据集内容丰富,详细记录了各类配送属性,包括包裹类型(如电子产品、食品杂货、文件、易碎品等)、交通工具类型(如自行车、摩托车、货车、卡车,含电动车型)、配送模式(当日达、快递、两天达、标准配送)、地理区域、天气状况、配送距离、包裹重量及成本指标等。此外,还包含配送状态(已送达、延迟、失败)、客户评分(1 - 5级)以及实际与预期配送时间的对比等性能指标。 不过,该数据集存在一些问题,需要进行数据清洗。例如,时间戳格式有误,出现了占位符1970日期;配送标识符不一致;还有一条不完整的最终记录。尽管如此,这个数据集仍具有很高的研究价值。通过对它进行分析,可以从多个维度评估配送绩效,如分析不同承运人的效率、各区域的运营情况、天气对配送的影响、成本结构以及客户满意度等。这些分析结果能为电子商务和供应链运营中的物流优化及服务质量提升提供重要参考和宝贵见解,助力相关企业更好地制定策略,提高运营效率和服务水平。

2025-11-29

机器徐诶(预测模型):检测代码仓库中内部威胁和异常行为的合成数据集

数据集是一个用于检测代码仓库中内部威胁和异常行为的合成数据集。数据集的核心是“synthetic commit log data”,即人为生成的代码提交日志数据。这些数据模拟了真实的代码提交场景,但并非来自实际的开发项目。 数据集的主要目的是帮助研究人员和开发者构建和测试检测内部威胁的算法。内部威胁是指组织内部人员可能对系统安全构成的威胁,例如故意或无意地引入恶意代码、泄露敏感信息等。通过这些合成的提交日志数据,可以模拟各种内部威胁场景,从而训练和评估检测模型的性能。 数据集中包含了多种类型的提交日志,每条日志都包含了提交者信息、提交时间、提交描述等关键信息。这些日志被设计为包含正常行为和异常行为的混合体,其中异常行为可能代表内部威胁。通过分析这些日志,可以识别出与正常开发活动不符的异常模式,从而实现对内部威胁的早期预警。 此外,数据集还提供了用于异常检测的工具和方法,帮助用户更好地理解和应用这些数据。它是一个宝贵的资源,对于那些致力于提高代码仓库安全性、保护软件供应链免受内部威胁的研究者和开发者来说,具有重要的价值。

2025-11-29

机器学习(AI大模型):ChatGPT(1M)风格多轮对话数据集

数据集是一个大规模的多轮对话数据集,包含100万段对话样本。该数据集的对话风格模仿了ChatGPT,对话内容自然流畅,具有较高的智能性,能够为构建和优化聊天机器人提供丰富的语料支持。 在对话轮数方面,数据集中的每段对话都包含多个来回的交流,这使得它能够满足多轮对话的研究和开发需求。无论是训练聊天机器人理解上下文语境,还是测试其应对复杂对话场景的能力,这个数据集都能提供充足且多样化的样本。 此外,数据集还配备了数据卡(Data Card),其中详细记录了数据集的基本信息、统计情况以及使用指南等,方便用户快速了解和上手使用。不过,目前该数据集尚未提供与之相关的代码资源、讨论内容以及改进建议,这或许意味着它还处于初步发展阶段,需要更多使用者的参与和反馈来进一步完善。 总体而言,数据集凭借其庞大的数据规模和多轮对话的特点,在聊天机器人领域具有较高的应用价值和研究潜力,对于相关领域的开发者和研究人员来说,是一个值得关注和利用的宝贵资源。

2025-12-28

机器学习(预测模型):局域网(LAN)稳定性数据集

数据集其核心内容是关于局域网(LAN)稳定性的研究,重点在于测量无线局域网(WLAN)与基于以太网(Ethernet)的局域网的响应时间。该数据集为我提供了关于不同网络连接方式下网络性能的关键指标,这对于深入分析网络稳定性具有重要价值。 通过该数据集,我能够获取到不同网络环境下设备之间的通信响应时间数据,包括无线网络与有线以太网网络的对比数据。这些数据将有助于我更好地理解网络在实际应用中的表现差异,从而为网络优化和设计提供有力的数据支持。 我接受该数据集,并将严格遵守相关使用规定,确保在合法合规的范围内使用数据,保护数据的隐私和安全。同时,我也会充分利用这些数据,开展深入的分析研究,以期获得有价值的结论和见解,为网络技术的发展贡献自己的一份力量。

2025-12-28

机器学习(预测模型):2021年世界大学排名数据集

指的是2021年世界大学排名,这是一个对全球众多大学进行评估和排序的榜单,通常会综合考虑诸如教学质量、科研成果、国际化程度、学术声誉等多种因素来确定各大学的排名位置。数据集表明这份排名涵盖了全球1000多所大学以及它们各自的得分情况,这些得分是根据特定的评价指标体系计算得出,用于反映大学在各项指标上的综合表现,进而让不同大学能够在排名中体现出相应的水平差异,方便人们了解全球大学的整体情况和各自的优势与特点。

2025-12-28

机器学习(预测模型):2021年亚洲贫困发生率数据集

数据集它聚焦于亚洲地区的贫困问题,通过量化的方式呈现不同国家在特定贫困线下的贫困人口占比情况。 数据集的核心是贫困发生率,即生活在贫困线以下的人口占总人口的百分比。这里的贫困线标准是每天生活费用低于3美元,且按照2021年的购买力平价(PPP)来计算。购买力平价是一种重要的经济指标,它能够更准确地反映不同国家货币的实际购买力,从而使得贫困线标准在不同国家之间具有可比性。 数据集涵盖了亚洲多个国家,其中特别包含了中国和日本这两个具有代表性的国家。通过这些数据,我们可以了解到在亚洲地区,不同国家在相同贫困线标准下的贫困人口占比差异。这对于研究亚洲地区的贫困状况、分析各国经济发展水平以及制定扶贫政策等方面都具有重要的参考价值。 这个数据集可以为研究人员、政策制定者以及对亚洲地区贫困问题感兴趣的个人提供有价值的信息。通过对这些数据的分析,可以更深入地理解亚洲地区的贫困现状,发现贫困的分布规律,进而为改善亚洲地区的贫困状况提供数据支持和决策依据。

2025-12-28

机器学习(预测模型):血液捐献者登记数据集

数据集它是一个为机器学习(ML)就绪的合成登记数据集,专门用于血型、资格以及捐献分析。 数据集的核心内容是关于血液捐献者的详细登记信息。它涵盖了多个关键字段,包括但不限于捐献者的血型、健康状况、以往的捐献记录等。这些数据被精心设计和合成,旨在模拟真实世界中血液捐献者的登记情况,同时又能够保护个人隐私,避免使用真实个人数据可能带来的隐私风险。 对于血型部分,数据集详细记录了各种血型的分布情况,这有助于分析不同血型的捐献者数量和比例,为血液供应的合理调配提供依据。在资格方面,数据集包含了捐献者是否符合捐献条件的判断,以及不符合条件的具体原因,这对于优化捐献者的筛选流程和提高血液质量具有重要意义。 捐献分析是该数据集的另一个重要应用领域。通过对捐献频率、捐献量等数据的分析,可以深入了解捐献行为的规律,发现潜在的捐献趋势和问题。例如,可以分析出哪些因素会影响捐献者的捐献意愿和频率,从而为制定更有效的捐献激励措施提供数据支持。 此外,由于该数据集是为机器学习就绪的,它已经被整理和格式化,可以直接用于训练机器学习模型。这使得研究人员和数据科学家能够快速利用该数据集进行各种预测和分析任务,如预测捐献者的未来捐献行为、评估捐献者的资格等,从而为血液捐献领域的决策提供更科学、更准确的支持。

2025-12-28

机器学习(预测模型):智能农作物产量预测数据集

在现代农业领域,精准预测农作物产量对于农业规划、市场调控以及资源合理分配具有至关重要的意义。数据集正是为助力这一目标而精心打造的宝贵资源。 该数据集涵盖了多种农作物的生长与产量相关信息。从土壤层面来看,它详细记录了土壤的酸碱度、肥力指标,如氮、磷、钾等关键营养元素的含量,这些基础数据为分析土壤对农作物生长的影响提供了依据。在气候方面,数据集纳入了温度、降水量、日照时长等气象要素,因为这些因素直接关系到农作物的光合作用效率、生长周期长短以及病虫害的发生概率,进而影响产量。 此外,数据集还包含了农作物的种植品种、种植密度、灌溉方式、施肥策略等农事操作信息。不同品种的农作物在产量潜力上存在差异,而合理的种植密度、科学的灌溉与施肥则是实现高产的关键措施。通过对这些数据的整合分析,研究人员可以构建出精准的农作物产量预测模型。 借助机器学习算法,该数据集能够帮助农业从业者提前预估农作物产量,从而提前安排农产品的销售、储存以及后续的种植计划,有效降低市场风险,提高农业生产的经济效益。同时,对于农业科研人员而言,它也是探索农作物生长规律、优化种植技术的有力工具,有助于推动农业向智能化、可持续方向发展。 总之,数据集以其全面且细致的数据内容,在农作物产量预测及相关农业研究领域展现出巨大的应用价值,为农业现代化进程添砖加瓦。

2025-12-28

机器学习(金融模型):一个具有极端不平衡特征的合成信用风险数据集

数据集是一个专为不平衡分类任务设计的合成信用风险数据集。它以单文件形式呈现,虽为合成数据,但构建时充分考虑现实场景,具有较高的真实性,能有效模拟真实信用风险评估中的数据特征与分布情况。 该数据集的核心特点是极端不平衡。在信用风险领域,通常违约样本(负类)数量远少于正常还款样本(正类),而此数据集将这种不平衡性进一步放大,正负样本比例差距极大。这种极端不平衡的特性使得它成为研究和解决不平衡分类问题的绝佳素材,能够帮助研究人员深入探索在面对严重不平衡数据时,如何优化分类模型,提高对少数类(违约客户)的识别能力,从而更精准地评估信用风险。 数据集涵盖了信用风险评估中的多种关键特征,如借款人的信用评分、收入水平、债务情况、还款历史等。这些丰富的特征为机器学习模型提供了充足的信息,使其能够学习到不同特征与信用风险之间的复杂关系。通过对该数据集的分析和建模,可以更好地理解在不平衡数据环境下,哪些特征对信用风险的预测更为关键,以及如何利用这些特征构建出鲁棒性强、预测准确度高的信用风险分类模型。 对于数据科学家和机器学习从业者而言,该数据集是一个极具挑战性和实用价值的研究对象。它不仅能够推动不平衡分类算法的创新与发展,还能为金融机构在信用风险评估领域的实际应用提供有力支持,帮助其更有效地识别高风险客户,降低违约风险,提升整体风险管理水平。

2025-12-28

机器学习(预测模型):个体在阅读活动中的表现情况数据集

个体在阅读活动中的表现情况数据集即个体在阅读活动中的表现情况,包括阅读速度、理解能力、对阅读材料的掌握程度等多方面内容。 关于阅读表现的数据,这些数据可以是对阅读速度的具体数值记录,比如每分钟阅读多少个单词;也可以是对阅读理解能力的测试结果,例如在阅读理解题目中答对的题目数量等,是能够量化反映阅读表现情况的信息。数据集表示这些阅读表现数据是结合了人口统计学因素和情境因素来考量的。人口统计学因素可能包括年龄、性别、教育程度、种族等,这些因素可能会对阅读表现产生影响,比如不同年龄段的人在阅读速度和理解能力上可能会有差异,教育程度较高的人可能在阅读专业性较强的材料时表现更好等。情境因素则可能包括阅读环境(如安静的图书馆还是嘈杂的咖啡厅)、阅读目的(是休闲阅读还是学术研究)、阅读材料的类型(小说、学术论文、新闻报道等)等,不同的阅读情境也会影响阅读表现,例如在安静的环境中阅读可能更有利于集中注意力,从而提高阅读理解能力。

2025-12-28

机器学习(预测模型):Instagram帖子社交媒体数据分析数据集

包含Instagram帖子的性能指标,可用于社交媒体数据分析。数据文件名为“Instagram data.csv”,大小为59.68 kB,有13列数据,包括曝光量、来自主页、标签、探索、其他渠道的曝光量,以及保存、评论、分享、点赞、个人资料访问量等指标。数据集是用于机器学习、统计分析等目的的数据集合。它通常由多个数据样本组成,每个样本包含多个特征和一个或多个标签。例如,在图像识别数据集中,样本是图片,特征是像素值,标签是图片所代表的对象类别。 数据集的大小、质量和多样性对模型的性能至关重要。一个大的数据集可以提供丰富的信息,帮助模型学习到更准确的模式。同时,数据集需要经过清洗和预处理,去除噪声和错误数据,以提高模型的训练效果。

2025-12-28

机器学习(预测模型):全球最高100座建筑的集合数据集

数据集是一个关于全球最高100座建筑的集合。它通常包含了每座建筑的名称、高度、所在城市、所在国家、建成年份等基本信息。这些数据可以帮助研究者了解全球建筑的高度分布情况,分析不同地区在建筑高度上的差异,以及随着时间推移建筑高度的变化趋势。此外,该数据集还可以用于地理信息系统(GIS)分析,将建筑位置与地理环境相结合,探索建筑高度与城市经济、人口密度等因素之间的关系。对于建筑学、城市规划、地理学等相关领域的研究者和爱好者来说,这是一个非常有价值的数据集,能够为他们的研究和分析提供丰富的数据支持。

2025-12-28

机器学习(预测模型):全球机场信息数据集

数据集包含全球机场的代码和地理信息。 数据集主要包含两个文件:“airport-codes.csv”和“airport_frequencies.csv”。其中,“airport-codes.csv”文件记录了机场的详细信息,包括机场的内部标识符(id)、用于OurAirports URL的文本标识符(ident)、机场类型(如大型机场、小型机场、直升机机场等)、官方机场名称(name)、机场的纬度(latitude_deg)、经度(longitude_deg)、海拔高度(elevation_ft)、所在大洲代码(continent)、所在国家的ISO代码(iso_country)、所在地区代码(iso_region)、主要服务的城市(municipality)以及是否提供定期航班服务(scheduled_service)等信息。 另一个文件“airport_frequencies.csv”则包含了机场的通信频率信息,如内部标识符(id)、与机场关联的标识符(airport_ident)、频率类型(如塔台、地面控制等)、频率描述以及频率的兆赫值(frequency_mhz)。 该数据集可用于多种分析和可视化任务,例如根据国家填充大洲信息、分析机场通信频率的分布、利用地图绘制机场位置等。它适用于计算机科学、交通运输、旅行、地质学和地理空间分析等领域。

2025-12-14

机器学习(预测模型):巴厘岛游客与零售销售数据集

旨在分析巴厘岛的游客数量及其与零售销售之间的关系。数据集包含三个主要文件,分别从不同角度记录了2018年至2019年期间的游客和零售销售情况。 1. bali_tourist_csv 该文件详细记录了按国家分类的巴厘岛游客数量。它涵盖了2018年至2019年期间,来自不同国家的游客数量,为研究不同国家游客在巴厘岛的旅游趋势提供了基础数据。通过分析这些数据,可以了解哪些国家的游客更倾向于选择巴厘岛作为旅游目的地,以及游客数量随时间的变化趋势。 2. bali_tourist_trend.csv 此文件专注于巴厘岛年度游客趋势的分析。它记录了每年的游客总数及其变化趋势,帮助研究者和决策者了解巴厘岛旅游业的整体发展态势。通过这些数据,可以观察到游客数量的季节性波动、年度增长或下降趋势等,从而为旅游政策的制定和旅游资源的规划提供依据。 3. retail_sales.csv 该文件记录了巴厘岛的零售销售数据,但未显示具体的零售店名称。数据集中的零售销售信息反映了游客消费行为的一个侧面,有助于分析游客数量与零售销售之间的关联。通过对比游客数量和零售销售数据,可以探究旅游活动对当地零售业的带动作用,以及不同时间段内游客消费的变化情况。 所有数据均来源于印度尼西亚统计局(BPS),确保了数据的权威性和准确性。这些数据对于研究巴厘岛的旅游业、零售业以及两者之间的相互影响具有重要价值,可为相关领域的学术研究、政策制定和商业决策提供有力支持。

2025-12-14

机器学习(预测模型):纽约市超过450万次Uber行程的数据集

数据集是一个记录了2014年4月至9月纽约市超过450万次Uber行程的数据集。数据集包含6个文件,分别对应每月的行程数据,文件名如“uber-raw-data-apr14.csv”等。每个文件有四列数据:Date/Time(行程日期和时间)、Lat(行程起始点纬度)、Lon(行程起始点经度)、Base(与行程相关的TLC基础公司代码)。这些数据可用于分析Uber在纽约的运营模式、用户出行习惯、交通流量分布等,对城市规划、交通研究和商业分析等领域都有重要价值。

2025-12-14

机器学习(预测模型):2018年到2024年期间航班延误数据的数据集

数据集是一个涵盖2018年至2024年期间航班延误情况的宝贵数据集。它为研究航班延误现象提供了丰富的信息资源,具有重要的分析价值。 该数据集包含了大量航班的详细信息。每一行数据通常代表一个航班的记录,其中可能涉及多个关键字段。例如,航班号字段能够明确标识每一趟航班,使我们能够追踪特定航班的动态。起飞时间和到达时间字段则记录了航班的实际起降时刻,通过与计划时间对比,我们可以计算出航班的延误时长,这是衡量航班是否延误的核心指标。 此外,数据集中还可能包含航班的出发地和目的地机场信息,这对于分析不同机场的运营效率以及机场因素对航班延误的影响至关重要。航空公司字段则让我们能够从航空公司的角度出发,探究不同航空公司在航班延误管理上的差异,比如某些航空公司可能由于自身的运营管理策略、机队维护水平等因素,在航班延误率上呈现出不同的特点。 同时,数据集中或许还涵盖了天气状况、飞机型号、航班类型(如国内航班、国际航班)等信息。天气因素是导致航班延误的常见原因之一,通过对天气数据的分析,我们可以了解在不同气象条件下航班延误的概率分布,进而评估天气对航班延误的影响程度。飞机型号也可能与航班延误相关,不同的飞机型号在性能、维护要求等方面存在差异,这些差异可能会间接影响航班的准点率。 然而,需要注意的是,航班延误是一个复杂的多因素问题,仅凭这个数据集可能无法完全准确地预测航班延误情况。尽管如此,它为我们提供了一个良好的基础,通过运用数据分析、机器学习等技术手段对这些数据进行深入挖掘和分析,我们可以逐步构建起航班延误预测模型,从而为航空公司、机场以及乘客等相关方提供决策支持,帮助他们更好地应对航班延误带来的挑战,提高航空运输的整体效率和可靠性。

2025-12-14

机器学习(预测模型):澳大利亚机场与航线数据集

本数据集聚焦于澳大利亚主要机场间的潜在航班路线,为航空领域研究与分析提供了丰富详实的资料。数据集涵盖了众多关键信息,每条记录都如同一份详尽的航线档案。 机场细节方面,清晰记录了出发与到达机场的名称、所在城市,以及极具辨识度的IATA和ICAO代码,还有精准的地理坐标,这些信息为确定机场位置、规划航线网络奠定了基础。航班频率数据则从时间维度展开,细致到一周七天每天的航班有无,同时统计了每周及每天的总航班数,让研究者能直观了解各航线的繁忙程度与运营规律。 航班时刻信息里,首班与末班计划航班时间一目了然,这对于分析机场的运营时段、旅客的出行高峰时段等极具价值。航线指标中,预估的飞行时长能帮助评估各航线的运输效率,而票价数据则关联着市场定价策略与航线的经济价值。航空公司运营商信息以字典列表形式呈现,涵盖每条航线可执飞的航空公司,这反映了不同航线的市场竞争格局与航空公司的航线布局策略。 此数据集适用于航空公司优化航线规划、机场提升运营效能、旅游机构制定出行方案以及相关学者进行航空市场研究等多种场景,是探索澳大利亚航空市场的一份宝贵资源。

2025-12-14

机器学习(预测模型):印尼西爪哇省的茂物市旅游景点数据集

这个数据集是关于印度尼西亚茂物市和茂物县旅游景点的宝贵资源。它涵盖了这两个地区丰富的旅游景点信息,为相关研究和应用提供了坚实基础。 数据集包含了茂物市(6个分区)和茂物县(40个分区)的旅游景点完整列表。这些景点类型多样,涵盖了自然景观、历史文化遗迹、休闲娱乐场所等,能够满足不同游客的需求。数据收集于2025年11月,通过Python(Selenium)脚本从谷歌地图获取,确保了数据的时效性和准确性。 该数据集的创建具有多方面的价值。首先,它是数据分析的绝佳素材。研究人员可以通过对景点的各类数据进行分析,如游客评价、地理位置、周边设施等,挖掘出游客偏好、景点热度变化等有价值的信息,为旅游规划和管理提供依据。其次,在数据可视化方面,可以将这些数据转化为直观的图表或地图,清晰地展示景点分布、游客流量等信息,帮助人们更直观地了解茂物地区的旅游资源。此外,它还作为构建旅游推荐决策支持系统(DSS)的案例研究。通过分析数据集中的信息,可以开发出智能的推荐算法,为游客提供个性化的旅游景点推荐,提升游客的旅游体验。 总之,这个数据集对于旅游行业从业者、研究人员以及对茂物旅游感兴趣的个人都具有重要意义。它不仅提供了丰富的数据资源,还为各种创新应用和研究提供了可能,有助于推动茂物地区旅游业的发展和相关技术的进步。

2025-12-14

机器学习(预测模型):欧洲机场和航空路线数据集

它涵盖了欧洲260个主要机场之间的航空路线信息。它为研究欧洲航空网络提供了丰富的数据资源,包括机场之间的连接情况、航班的起始点和目的地等。通过这些数据,可以分析欧洲航空运输的布局、航线的繁忙程度、机场的枢纽地位等诸多方面。对于交通规划、航空市场研究、旅游路线设计等领域都有重要的参考价值,帮助人们更好地了解欧洲航空交通的现状和特点。

2025-12-14

机器学习(预测模型):分布式系统的合成日志数据集

这个数据集是 “分布式系统的合成日志数据”,它是一个专门为模拟分布式系统运行而生成的合成日志数据集。 数据集背景 在分布式系统中,日志数据是系统运行的重要记录,它包含了系统操作的详细信息、错误信息、性能指标等。然而,从真实系统中获取大量且多样化的日志数据往往存在困难,比如数据隐私问题、获取成本高、真实故障场景难以重现等。因此,合成日志数据应运而生,它通过模拟真实分布式系统的运行环境和业务流程,生成具有代表性的日志数据,为研究和开发提供了一个可控且丰富的数据来源。 数据集内容 该数据集包含了多个分布式系统的合成日志文件。每个日志文件都模拟了分布式系统在一定时间范围内的运行情况。日志数据中涵盖了各种类型的日志记录,如系统操作日志、错误日志、性能日志等。这些日志记录按照时间顺序排列,记录了系统中各个组件的交互、资源使用情况、故障发生和恢复过程等信息。数据集还提供了日志数据的结构化描述,包括日志级别、时间戳、日志消息、日志源等字段,方便用户进行分析和处理。 数据集用途 这个数据集的主要用途是为分布式系统的研究和开发提供支持。研究人员可以利用这些合成日志数据来开发和测试日志分析算法,例如故障检测、性能优化、异常模式识别等。开发人员可以使用这些数据来验证分布式系统的日志记录功能是否正常工作,以及在模拟的故障场景下系统的行为是否符合预期。此外,数据集还可以用于教育和培训目的,帮助学生和新手更好地理解和掌握分布式系统的日志分析方法和工具。 数据集优势 与真实日志数据相比,这个合成日志数据集具有以下优势:一是数据的可控性高,可以根据需要生成不同规模、不同场景的日志数据;二是数据的隐私性好,不存在真实数据中可能涉及的隐私问题;三是数据的多样性丰富,可以模拟各种复杂的分布式系统环境和故障模式,为研究和开发提供了更广泛的测试场景。

2025-12-14

机器学习(数据模型):16000 个 AI 工具数据集

它是一个关于人工智能工具的集合,涵盖了海量的 AI 工具相关信息。 数据集的主要内容是超过 16000 个 AI 工具的详细记录。这些工具可能包括各种类型的 AI 应用程序、软件、平台等,它们在不同的领域和场景中发挥作用,如自然语言处理、图像识别、数据分析等。数据集中可能包含每个工具的名称、功能描述、所属类别、适用场景、开发者信息、使用成本(免费或付费)、用户评价等多维度的数据字段。 对于研究人员来说,这个数据集可以作为研究 AI 工具市场分布、发展趋势、用户偏好等方面的重要资源。开发者可以通过它来了解市场上已有的工具,寻找灵感或避免重复开发。企业也可以利用这个数据集来评估潜在的 AI 工具供应商,选择适合自身业务需求的工具进行集成和应用。 不过需要注意的是,数据集的具体质量和准确性需要使用者自行验证,因为任何数据集都可能存在一定的误差或不完整之处。而且随着时间的推移,AI 领域发展迅速,数据集中的部分信息可能需要更新以保持其时效性。总体而言,这是一个对于关注 AI 工具生态的人来说非常有价值的资源集合。

2025-12-14

机器学习(预测模型):苹果公司财务与社会分析数据集

数据集是一个关于苹果公司的综合数据集。它包含了苹果公司从2015年到2022年的财务数据,如收入、利润、市值等,这些数据可以帮助用户了解苹果公司的财务状况和业务增长趋势。数据集还涵盖了社会分析相关的内容,例如苹果产品在不同国家的受欢迎程度、用户满意度、社交媒体上关于苹果的讨论热度等,这些数据能够从社会层面反映苹果品牌的影响和用户反馈。此外,数据集还提供了苹果公司的产品信息,包括产品型号、发布日期、产品特性等,有助于分析苹果产品的发展历程和市场定位。该数据集对于进行苹果公司的财务分析、市场研究、品牌评估以及相关领域的学术研究和商业分析具有重要价值。

2025-12-14

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除