Leetcode: Binary Tree Preorder Traversal(二叉树前序遍历)

本文介绍二叉树的前序遍历算法,包括递归和迭代两种实现方式,并提供C++及C#代码示例。

题目:
Given a binary tree, return the preorder traversal of its nodes’ values.

For example:
Given binary tree {1,#,2,3},

 1
  \
   2
  /
 3
 

return [1,2,3].

Note: Recursive solution is trivial, could you do it iteratively?

二叉树的前序遍历

先看递归的写法(C++):

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution
{
private:
    vector<int> result;
public:
    vector<int> preorderTraversal(TreeNode *root)
    {
        if (root)
        {
            result.push_back(root->val);
            preorderTraversal(root->left);
            preorderTraversal(root->right);
        }
        return result;
    }
};

二叉树的中序遍历每次都是走树的左分支(left),直到左子树为空,然后开始从递归的最深处返回,访问右子树。所以得有一个结构存储左子树访问结束后回溯的那个节点从而进行右子书的访问。这个结构就是栈Stack。

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution
{
public:
    vector<int> preorderTraversal(TreeNode *root)
    {
        stack<TreeNode*> nodes;
        vector<int> result;
        TreeNode *node = root;
        while (node || !nodes.empty())
        {
            //一路向右
            if (node)
            {
                result.push_back(node->val);//先序遍历访问根节点
                nodes.push(node);//节点入栈
                node = node->left;
            }
            //右子树为空,追溯回最后的节点
            else
            {
                node = nodes.top();
                nodes.pop();//将此节点出栈
                node = node->right;//指向此节点的右节点,将该节点当成根节点循环
            }
        }
        return result;
    }
};

C#代码:

/**
 * Definition for binary tree
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int x) { val = x; }
 * }
 */
public class Solution
{
    public IList<int> PreorderTraversal(TreeNode root)
    {
        IList<int> result = new List<int>();
        Stack<TreeNode> nodes = new Stack<TreeNode>();
        TreeNode node = root;
        while (node != null || nodes.Count > 0)
        {
            if (node != null)
            {
                result.Add(node.val);
                nodes.Push(node);
                node = node.left;
            }
            else
            {
                node = nodes.Pop();
                node = node.right;
            }

        }
        return result;
    }
}
### 如何用 C 语言通过前序遍历和中序遍历来构建二叉树LeetCode 的题目 **105. Construct Binary Tree from Preorder and Inorder Traversal** 中,目标是从给定的前序遍历 (`preorder`) 和中序遍历 (`inorder`) 构建一棵唯一的二叉树。以下是基于此问题的解决方案。 #### 方法概述 为了完成这一任务,可以采用递归的方法解决该问题。核心思路如下: - 前序遍历的第一个元素总是当前子树的根节点。 - 利用这个根节点,在中序遍历序列中找到其位置 `index`,从而将中序遍历划分为左子树部分(位于索引左侧的部分)和右子树部分(位于索引右侧的部分)。 - 对于每棵子树,重复上述过程直至处理完毕所有节点。 这种方法的时间复杂度为 O(n),其中 n 是节点的数量[^3]。 #### 数据结构定义 首先需要定义一个表示二叉树节点的数据结构: ```c // 定义二叉树节点结构体 struct TreeNode { int val; struct TreeNode* left; struct TreeNode* right; }; ``` #### 实现代码 下面是完整的 C 语言实现代码: ```c #include <stdio.h> #include <stdlib> // 查找函数:用于在 inorder 数组中定位指定值的位置 int findIndex(int* inorder, int start, int end, int value) { for (int i = start; i <= end; ++i) { if (inorder[i] == value) return i; } return -1; // 如果未找到则返回错误码 } // 辅助递归函数 struct TreeNode* buildTreeHelper( int* preorder, int preStart, int preEnd, int* inorder, int inStart, int inEnd ) { if (preStart > preEnd || inStart > inEnd) return NULL; // 创建新节点并初始化 struct TreeNode* root = malloc(sizeof(struct TreeNode)); root->val = preorder[preStart]; // 在 inorder 数组中寻找根节点的位置 int index = findIndex(inorder, inStart, inEnd, preorder[preStart]); // 计算左子树长度 int leftSize = index - inStart; // 递归构造左右子树 root->left = buildTreeHelper(preorder, preStart + 1, preStart + leftSize, inorder, inStart, index - 1); root->right = buildTreeHelper(preorder, preStart + leftSize + 1, preEnd, inorder, index + 1, inEnd); return root; } // 主调用接口 struct TreeNode* buildTree(int* preorder, int preorderSize, int* inorder, int inorderSize) { if (!preorder || !inorder || preorderSize != inorderSize) return NULL; return buildTreeHelper(preorder, 0, preorderSize - 1, inorder, 0, inorderSize - 1); } ``` #### 复杂度分析 - 时间复杂度:O(n)[^3],因为每个节点仅被访问一次。 - 空间复杂度:取决于递归栈的最大深度,最坏情况下可能达到 O(n)。 #### 测试案例 假设输入数据如下: ```plaintext Preorder: [3,9,20,15,7] Inorder : [9,3,15,20,7] ``` 可以通过以下方式测试程序: ```c void printTree(struct TreeNode* node) { if (node == NULL) return; printf("%d ", node->val); printTree(node->left); printTree(node->right); } int main() { int preorder[] = {3, 9, 20, 15, 7}; int inorder[] = {9, 3, 15, 20, 7}; int size = sizeof(preorder)/sizeof(preorder[0]); struct TreeNode* root = buildTree(preorder, size, inorder, size); printTree(root); // 输出应为原前序遍历顺序 return 0; } ``` 运行结果将是 `[3 9 20 15 7]`,这表明重建后的二叉树与原始一致[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值