bzoj 1898 [Zjoi2005]Swamp 沼泽鳄鱼 矩阵乘法

Description

潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区。每当雨季来临,这里碧波荡漾、生机盎然,引来不少游客。为了让游玩更有情趣,人们在池塘的中央建设了几座石墩和石桥,每座石桥连接着两座石墩,且每两座石墩之间至多只有一座石桥。这个景点造好之后一直没敢对外开放,原因是池塘里有不少危险的食人鱼。豆豆先生酷爱冒险,他一听说这个消息,立马赶到了池塘,想做第一个在桥上旅游的人。虽说豆豆爱冒险,但也不敢拿自己的性命开玩笑,于是他开始了仔细的实地勘察,并得到了一些惊人的结论:食人鱼的行进路线有周期性,这个周期只可能是2,3或者4个单位时间。每个单位时间里,食人鱼可以从一个石墩游到另一个石墩。每到一个石墩,如果上面有人它就会实施攻击,否则继续它的周期运动。如果没有到石墩,它是不会攻击人的。借助先进的仪器,豆豆很快就摸清了所有食人鱼的运动规律,他要开始设计自己的行动路线了。每个单位时间里,他只可以沿着石桥从一个石墩走到另一个石墩,而不可以停在某座石墩上不动,因为站着不动还会有其它危险。如果豆豆和某条食人鱼在同一时刻到达了某座石墩,就会遭到食人鱼的袭击,他当然不希望发生这样的事情。现在豆豆已经选好了两座石墩Start和End,他想从Start出发,经过K个单位时间后恰好站在石墩End上。假设石墩可以重复经过(包括Start和End),他想请你帮忙算算,这样的路线共有多少种(当然不能遭到食人鱼的攻击)。

Input

输入文件共M + 2 + NFish行。第一行包含五个正整数N,M,Start,End和K,分别表示石墩数目、石桥数目、Start石墩和End石墩的编号和一条路线所需的单位时间。石墩用0到N–1的整数编号。第2到M + 1行,给出石桥的相关信息。每行两个整数x和y,0 ≤ x, y ≤ N–1,表示这座石桥连接着编号为x和y的两座石墩。第M + 2行是一个整数NFish,表示食人鱼的数目。第M + 3到M + 2 + NFish行,每行给出一条食人鱼的相关信息。每行的第一个整数是T,T = 2,3或4,表示食人鱼的运动周期。接下来有T个数,表示一个周期内食人鱼的行进路线。 如果T=2,接下来有2个数P0和P1,食人鱼从P0到P1,从P1到P0,……; 如果T=3,接下来有3个数P0,P1和P2,食人鱼从P0到P1,从P1到P2,从P2到P0,……; 如果T=4,接下来有4个数P0,P1,P2和P3,食人鱼从P0到P1,从P1到P2,从P2到P3,从P3到P0,……。豆豆出发的时候所有食人鱼都在自己路线上的P0位置,请放心,这个位置不会是Start石墩。

Output

输出路线的种数,因为这个数可能很大,你只要输出该数除以10000的余数就行了。 【约定】 1 ≤ N ≤ 50  1 ≤ K ≤ 2,000,000,000  1 ≤ NFish ≤ 20

Sample Input

6 8 1 5 3

0 2

2 1

1 0

0 5

5 1

1 4

4 3

3 5

1

3 0 5 1

Sample Output

2

【样例说明】

时刻 0 1 2 3

食人鱼位置 0 5 1 0

路线一 1 2 0 5

路线二 1 4 3 5

HINT


传送门
刷水……
会矩阵乘法trick的应该都会吧。。
也就是说对于一个矩阵A,A[x][y]=k表示x连到y的边数
计算 An 后,A[x][y]就表示x到y的方案数。
那么这题就是多了个食人鱼,使得邻接矩阵每次不太一样。
但是看到食人鱼是有周期的,而且只有2,3,4
那么意味着,最多12次,之后就会重复了。
那么只要求出12个不同的邻接矩阵P[1..12],
然后令A=P[1]*……P[12],
计算 An/12 ,然后n%12的部分另外计算即可。



……一开始竟然以为矩阵乘法有交换性。。。真是zz了= =

#include<bits/stdc++.h>
using namespace std;
const int 
    N=55,
    mod=10000;
int n,m,nfish;
int T[25],P[25][4],x[N*N],y[N*N];
bool flag[N];
struct Matrix{
    int val[N][N];
    Matrix(){memset(val,0,sizeof(val));}
    Matrix operator *(Matrix x){
        Matrix c;
        for (int i=1;i<=n;i++)
            for (int j=1;j<=n;j++)
                for (int k=1;k<=n;k++)
                    c.val[i][j]=(c.val[i][j]+val[i][k]*x.val[k][j]%mod)%mod;
        return c;
    }
}ALL,part[12];
Matrix ksm(Matrix a,int y){
    Matrix z;
    for (int i=1;i<=n;i++) z.val[i][i]=1;
    while (y){
        if (y&1) z=z*a;
        y>>=1;a=a*a;
    }
    return z;
}
void Pre(){
    for (int i=1;i<=n;i++) ALL.val[i][i]=1;
    for (int i=0;i<12;i++){
        memset(flag,0,sizeof(flag));
        for (int j=1;j<=nfish;j++) flag[P[j][i%T[j]]]=1;
        for (int j=1;j<=m;j++){
            if (!flag[x[j]]) part[i].val[y[j]][x[j]]++;
            if (!flag[y[j]]) part[i].val[x[j]][y[j]]++;
        }
        for (int j=1;j<=n;j++)
            if (flag[j]){
                for (int k=1;k<=n;k++)
                    part[i].val[k][j]=0;
            }
    }
    for (int i=1;i<12;i++) ALL=ALL*part[i];
    ALL=ALL*part[0];
}
int main(){
    int Start,End,K;
    scanf("%d%d%d%d%d",&n,&m,&Start,&End,&K);
    Start++,End++;
    for (int i=1;i<=m;i++)
        scanf("%d%d",&x[i],&y[i]),x[i]++,y[i]++;
    scanf("%d",&nfish);
    for (int i=1;i<=nfish;i++){
        scanf("%d",&T[i]);
        for (int j=0;j<T[i];j++)
            scanf("%d",&P[i][j]),P[i][j]++;
    }
    Pre();

    ALL=ksm(ALL,K/12);
    int x=K%12;
    if (x)
        for (int i=1;i<=x;i++) ALL=ALL*part[i];
    printf("%d\n",ALL.val[Start][End]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值