如果没有食人鱼(鳄鱼),就是普通矩乘
如果有了食人鱼,就要考虑多一点
特殊值入手
注意到食人鱼的周期不会超过4次,它是很小的,而且隐藏了周期性
这个周期性已经提示了要利用周期性dp、所以就考虑把<=4的周期统一,即lcm=12
所以就利用12转移就可以了
然后要注意:当转移不规律的时候,矩乘不满足交换律,所以小于12的部分要放到最后乘(因为矩乘是按照顺序转移的)
码:
#include<iostream>
#include<cstdio>
using namespace std;
#define N 55
#define leaves 10000
int n,m,fishn,T[33],p,pp,v[33][5],f[N][N],lin[N][N],ggg[N][N],g[N][N],fff[N][N],ff[N][N],i,j,l,k,K,a,t,s,b;
bool bsdyg,ky;
int main()
{
scanf("%d%d%d%d%d",&n,&m,&s,&t,&K);
s++;
t++;
for(i=1;i<=m;i++)
{
scanf("%d%d",&a,&b);
a++,b++;
ff[a][b]=ff[b][a]=1;
}
scanf("%d",&fishn);
for(i=1;i<=fishn;i++)
{
scanf("%d",&T[i]);
for(j=0;j<T[i];j++)
{
scanf("%d",&a);v[i][j]=a+1;
}
}
for(i=1;i<=n;i++)fff[i][i]=lin[i][i]=1;
while(K)
{
//转移
for(i=1;i<=n;i++)f[i][i]=1;
if(bsdyg==0)for(i=1;i<=fishn;i++)f[v[i][0]][v[i][0]]=0;
for(i=1;i<=12;i++)
{
for(j=1;j<=n;j++)//起点
for(k=1;k<=n;k++)//中间点
for(l=1;l<=n;l++)//终点
{
ky=1;
if(bsdyg==0){
for(p=1;p<=fishn;p++)
if(v[p][i%T[p]]==l){ky=0;break;}
}
if(ky==1)g[j][l]+=f[j][k]*ff[k][l]%leaves; //相当于走了一步
g[j][l]%=leaves;
}
// cout<<i<<endl<<endl;cout<<"PP"<<lin[4][4]<<" "<<lin[6][4]<<endl;
for(j=1;j<=n;j++)
for(k=1;k<=n;k++)
{
f[j][k]=g[j][k],g[j][k]=0;
//if(f[j][k])cout<<j<<" : "<<k<<" = "<<f[j][k]<<endl;
}
if(i==K%12)
{
if(bsdyg==0)
{
for(j=1;j<=n;j++)for(k=1;k<=n;k++)lin[j][k]=f[j][k];
}else
{
for(j=1;j<=n;j++)//起点
for(k=1;k<=n;k++)//中间点
for(l=1;l<=n;l++)//终点
{
ggg[j][l]+=fff[j][k]*f[k][l]%leaves; //相当于走了一步
ggg[j][l]%=leaves;
}
for(j=1;j<=n;j++)for(k=1;k<=n;k++)fff[j][k]=ggg[j][k],ggg[j][k]=0;
}
}
}
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
ff[i][j]=f[i][j],f[i][j]=0;
K/=12;
bsdyg=1;
}
for(j=1;j<=n;j++)//起点
for(k=1;k<=n;k++)//中间点
for(l=1;l<=n;l++)//终点
{
ggg[j][l]+=fff[j][k]*lin[k][l]%leaves; //相当于走了一步
ggg[j][l]%=leaves;
}
for(j=1;j<=n;j++)
for(k=1;k<=n;k++)
fff[j][k]=ggg[j][k],ggg[j][k]=0;
printf("%d",fff[s][t]);
}