[ZJOI2005]沼泽鳄鱼 矩乘dp

如果没有食人鱼(鳄鱼),就是普通矩乘

如果有了食人鱼,就要考虑多一点

特殊值入手

注意到食人鱼的周期不会超过4次,它是很小的,而且隐藏了周期性

这个周期性已经提示了要利用周期性dp、所以就考虑把<=4的周期统一,即lcm=12

所以就利用12转移就可以了


然后要注意:当转移不规律的时候,矩乘不满足交换律,所以小于12的部分要放到最后乘(因为矩乘是按照顺序转移的)


码:

#include<iostream>
#include<cstdio>
using namespace std;
#define N 55
#define leaves 10000
int n,m,fishn,T[33],p,pp,v[33][5],f[N][N],lin[N][N],ggg[N][N],g[N][N],fff[N][N],ff[N][N],i,j,l,k,K,a,t,s,b;
bool bsdyg,ky;
int main()
{
	scanf("%d%d%d%d%d",&n,&m,&s,&t,&K);
	s++;
	t++;
	for(i=1;i<=m;i++)
	{
		scanf("%d%d",&a,&b);
		a++,b++;
		ff[a][b]=ff[b][a]=1;		
	}
	scanf("%d",&fishn);
	for(i=1;i<=fishn;i++)
	{
	scanf("%d",&T[i]);
		for(j=0;j<T[i];j++)
		{
		scanf("%d",&a);v[i][j]=a+1;	
	}
	}
for(i=1;i<=n;i++)fff[i][i]=lin[i][i]=1;
	while(K)
	{
		//转移	
for(i=1;i<=n;i++)f[i][i]=1;
if(bsdyg==0)for(i=1;i<=fishn;i++)f[v[i][0]][v[i][0]]=0;
	for(i=1;i<=12;i++)
{	
		for(j=1;j<=n;j++)//起点 
		for(k=1;k<=n;k++)//中间点 
		for(l=1;l<=n;l++)//终点 
		{
			ky=1;
			
		if(bsdyg==0){
			for(p=1;p<=fishn;p++)
			if(v[p][i%T[p]]==l){ky=0;break;}
	             	}
	             	
			if(ky==1)g[j][l]+=f[j][k]*ff[k][l]%leaves;	//相当于走了一步
			g[j][l]%=leaves;		
		}
	//	cout<<i<<endl<<endl;cout<<"PP"<<lin[4][4]<<" "<<lin[6][4]<<endl;
		for(j=1;j<=n;j++)
		for(k=1;k<=n;k++)
		{
		f[j][k]=g[j][k],g[j][k]=0;	
	    //if(f[j][k])cout<<j<<" : "<<k<<" = "<<f[j][k]<<endl;
		}
	if(i==K%12)
	{
		if(bsdyg==0)
		{
			for(j=1;j<=n;j++)for(k=1;k<=n;k++)lin[j][k]=f[j][k];
		}else
		{
	    for(j=1;j<=n;j++)//起点 
		for(k=1;k<=n;k++)//中间点 
		for(l=1;l<=n;l++)//终点 
		{
	ggg[j][l]+=fff[j][k]*f[k][l]%leaves;	//相当于走了一步	
		ggg[j][l]%=leaves;
		}	
		for(j=1;j<=n;j++)for(k=1;k<=n;k++)fff[j][k]=ggg[j][k],ggg[j][k]=0;	
	    }	
	}	
}
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
ff[i][j]=f[i][j],f[i][j]=0;	
	K/=12;
	bsdyg=1;					
	}
	    for(j=1;j<=n;j++)//起点 
		for(k=1;k<=n;k++)//中间点 
		for(l=1;l<=n;l++)//终点 
		{
	ggg[j][l]+=fff[j][k]*lin[k][l]%leaves;	//相当于走了一步	
		ggg[j][l]%=leaves;
		}	
		for(j=1;j<=n;j++)
		for(k=1;k<=n;k++)
		fff[j][k]=ggg[j][k],ggg[j][k]=0;
	printf("%d",fff[s][t]);
	
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值