bzoj 4805 欧拉函数求和 杜教筛

Description
给出一个数字N,求sigma(phi(i)),1<=i<=N

Input
正整数N。N<=2*10^9

Output
输出答案。

Sample Input
10
Sample Output
32
HINT


传送门
太神了我竟然才会杜教筛……
大致写写推导过程吧(虽然都是按照网上的来的QAQ)
设phi(i)表示i的欧拉函数,那么有如下式子:

d|iphi(d)=i

这个东西怎么来的呢。。可以简单证明一下(可能不太严谨):

phi(i)1<=i<=4
n>4n=pmpphi(m)
phi(n)=phi(m)p=phi(m)(phi(p)+1)
mKmSm
phi(n)=i=1,i<=Kmphi(p)phi(Si)+phi(m)
=i=1,i<=Kmphi(pSi)+i=1,i<=Kmphi(Si)
mphi
ppSi
phin

现在令 M[n]=phi[i]
对于上面得出的式子进行变形:
d|nphi(d)=n=i=1,i<=nd|iphi(d)=n(n+1)/2i=kdk=k=1,k<=nd=1,d<=n/kphi(d)=k=1,k<=nM[n/k]=n(n+1)/2

于是做个差,就得到了:
M[n]=n(n+1)/2k=2,k<=nM[n/k]

注意n/k下取整。
其实推到中由枚举d转化到枚举1~n/k是挺巧的……
可以看作对于k,1~n/k的每个约数次数肯定都+1了。
然后这个式子我们该怎么算呢?
这个式子很好地构成了一个”n\k”项,
而我们知道,n/k是只有O( n )种取值的,
也就是说,先枚举k=1~ n ,求出这 n 种取值,
然后枚举n/k=i,i=1~ n
因为k更大的时候,答案种数不超过 n 个。
这就可以递归计算了,然后用一个记忆化记录,
先预处理出O( n2/3 )内的M[],
由于只有 n 种,所以记忆化的存储量不会很大。
记忆化我就用了个map来存了……(数组开不了)
时间复杂度怪怪的不会证。。说是O( n2/3 )的。。
用了map的话……再乘个log吧。。。

神啊杜教筛……

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int 
    maxn=1600000;
ll M[maxn];
map<int,ll>f;
int pcnt,phi[maxn],prime[maxn/10];
bool notprime[maxn];
void Get_Phi(){
    phi[1]=M[1]=1,pcnt=0;
    notprime[1]=1;
    for (int i=2;i<maxn;i++){
        if (!notprime[i]) phi[i]=i-1,prime[++pcnt]=i;
        for (int j=1;j<=pcnt;j++){
            if (prime[j]*i>=maxn) break;
            notprime[i*prime[j]]=1;
            if (i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
            phi[i*prime[j]]=phi[i]*(prime[j]-1);
        }
    }
    for (int i=2;i<maxn;i++) M[i]=M[i-1]+phi[i];
}
ll solve(int n){
    if (n<maxn) return M[n];
    if (f[n]) return f[n];
    int tmp=sqrt(n);ll t=0LL;
    for (int i=2;i<=tmp;i++) t+=solve(n/i);
    tmp=n/(tmp+1);
    for (int i=1;i<=tmp;i++) t+=solve(i)*(n/i-n/(i+1));
    f[n]=((ll)n*(n+1)>>1LL)-t;
    return f[n];
}
int main(){
    Get_Phi();
    int n;scanf("%d",&n);
    printf("%lld\n",solve(n));
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值