组合数学常用内容——Polya定理+Burnside引理

本文介绍了组合数学中的重要概念,包括Burnside引理和Polya定理,详细阐述了Polya定理的母函数形式,并列举了常见多面体的置换群,如正四面体、正六面体和正八面体。通过实例展示了Polya和Burnside引理在解决多面体计数问题上的应用。
摘要由CSDN通过智能技术生成

Burnside引理

设G是N{1,2,.....,n}上的置换群,G在N上可引出不同的等价类(在置换群中有置换的都等价),其不同的等价类的个数为L

L=1/|G|*(c1(a1)+...c1(ai)...+c1(ag))c1表示置换ai作用过后不变的方案数,也就是置换中循环节长度是1的循环个数

(N中的元素是组合方案的序号不是自然数!此置换群是关于所有着色图像(所有可能的情况)集合N的置换)

Burnside应用关键:如何构造置换群(图形上来说一般为根据中心点,对称轴进行旋转和翻转)

缺陷:置换是作用在所有方案上的,如果颜色数量过多,方案随之剧增,Burnside无能为力;

Polya定理

设G是n个对象的一个置换群(此置换群是关于所有被着色对象集合的置换),用m种颜色对这n个对象进行着色,则不同的染色方案数为l

l=1/|G|*(m^c(a1)+...m^c(ai)+...m^c(an)) c表示ai置换的循环节数量

当着色方案有具体限制条件时一般用Burnside引理而不用Polya定理

Polya定理的母函数形式

设N是n个对象的集合,G是N上的置换群,G={P1,P2,...,Pg},用m种颜色b1,b2,...bm对n个对象进行着色

设Ck(P)为置换P中k循环,令Sk=b1^k+b2^k+...+bm^k,k=1,2,...n(Sk为每种颜色允许出现k次),则具体着色方案数的多项式为:
    P=1/|G|*∑(Pi∈G)(S1^c1(Pi)*S2^c2(Pi)*...*Sn^cn(Pi))

展开并合并同类项之后,b1^i1*b2^i2*...*bm^im前的系数即为具体着色方案数。

常用多面体的置换群

正四面体(顶点数:4,棱数:6)

1、以顶点为目标的转动群:
    以顶点—面心为轴:(1)1  (3)1  8个置换群;
    以棱中—棱中为轴:(2)2  3个置换群;
    不动:(1)4  1个置换群;

2、以棱为目标的转动群:
    以顶点—面心为轴:(3)2  8个置换群;
    以棱中—棱中为轴:(1)2  (2)2  3个置换群;
    不动:(1)6  1个置换群;

3、以面为目标的转动群:
    以顶点—面心为轴:(1)1  (3)1  8个置换群;
    以棱中—棱中为轴:(2)2  3个置换群;
    不动:(1)4 1个置换群;

正六面体(顶点数:8,棱数:12)

1、以顶点为目标的转动群:
    以顶点—顶点为轴:(1)2  (3)2  8个置换群;
    以棱中—棱中为轴:(2)4  6个置换群;
    以面心—面心为轴:(4)2  6个置换群;
                  (2)4  3个置换群;
    不动:(1)8  1个置换群;

2、以棱为目标的转动群:
    以顶点—顶点为轴:(3)4  8个置换群;
    以棱中—棱中为轴:(1)2  (2)5  6个置换群;
    以面心—面心为轴:(4)3  6个置换群;
                  (2)6  3个置换群;
    不动:(1)12  1个置换群;

3、以面为目标的转动群:
    以顶点—顶点为轴:(3)2  8个置换群;
    以棱中—棱中为轴:(2)3  6个置换群;
    以面心—面心为轴:(1)2  (4)1  6个置换群;
                  (1)2  (2)2  3个置换群;
    不动:(1)6  1个置换群;

正八面体(顶点数:6,棱数:12)

1、以顶点为目标的转动群:
    以顶点—
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值