Burnside引理

本文介绍了群论中的Burnside引理及其在组合计数问题中的应用。首先,阐述了群的基本概念,如封闭性、可结合性和单位元等。接着,讨论了置换群和n次对称群的概念,以及特殊置换——单位置换。然后,讲解了Burnside引理,它是解决给定置换方式下本质不同染色方案数目的关键。稳定核的概念也被引入,用来计算群中使元素固定不变的置换群。最后,通过[BZOJ1004]HNOI2008Cards问题举例说明了Burnside引理的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Burnside引理
神呐,st大神群论之王。。。
以下内容仅为本人浅显的理解,如果有误,还请指出

目录

需要的姿势

1.群

给定一个集合 G={ a,b,c,} ,和作用于 G 中元素的二元运算,记为
满足
1. 封闭的,即 a,bG,cG, 使 ab==c
2. 可结合的,即 a,b,cG, abc==a(bc)
3. 有单位元,即 eG, 使 aG, ae==a
4. aG, 有唯一的 bG, 使 ab==e, 其中 e 为上文提到的单位元.
则称 G 运算下是一个,记为 (G,)

2.置换群

  1. 置换:集合 { a1,a2,,an} 中的元素对该集合中元素的一一映射为一元置换 eg.{ 1,2,3}{ 2,3,1}
    记为:

    σ=(a1σ(a1)a2σ(a2)a3σ(a3)anσ(an))

    其中,对于 G 的一些置换方式 σi 作为元素组成的集合就是一个 G 的置换群。
    ps:有一种特殊的置换——单位置换,满足 aiG, σ(ai)==ai .

  2. 置换“乘法”
    个人感觉这个不能称之为乘法,只是一个群的二元运算

    Sn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值