Burnside引理
神呐,st大神群论之王。。。
以下内容仅为本人浅显的理解,如果有误,还请指出
目录
需要的姿势
1.群
给定一个集合 G={
a,b,c,⋯} ,和作用于 G 中元素的二元运算,记为
若 ∗ 满足
1. 封闭的,即
2. 可结合的,即 ∀a,b,c∈G, 有 a∗b∗c==a∗(b∗c) ;
3. 有单位元,即 ∃e∈G, 使 ∀a∈G, 有 a∗e==a ;
4. ∀a∈G, 有唯一的 b∈G, 使 a∗b==e, 其中 e 为上文提到的单位元.
则称
2.置换群
置换:集合 { a1,a2,⋯,an} 中的元素对该集合中元素的一一映射为一元置换。 即集合中每个元素换到了集合的另一个位置eg.{ 1,2,3}→{ 2,3,1}
记为:
σ=(a1σ(a1)a2σ(a2)a3σ(a3)⋯⋯anσ(an))
其中,对于 G 的一些置换方式σi 作为元素组成的集合就是一个 G 的置换群。
ps:有一种特殊的置换——单位置换,满足∀ai∈G, 有 σ(ai)==ai .置换“乘法”
个人感觉这个不能称之为乘法,只是一个群的二元运算设 Sn