HDU1228 A + B【map】

A + B

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17920    Accepted Submission(s): 10745


Problem Description
读入两个小于100的正整数A和B,计算A+B.
需要注意的是:A和B的每一位数字由对应的英文单词给出.
 

Input
测试输入包含若干测试用例,每个测试用例占一行,格式为"A + B =",相邻两字符串有一个空格间隔.当A和B同时为0时输入结束,相应的结果不要输出.
 

Output
对每个测试用例输出1行,即A+B的值.
 

Sample Input
  
  
one + two = three four + five six = zero seven + eight nine = zero + zero =
 

Sample Output
  
  
3 90 96
 

Source

问题链接HDU1228 A + B

问题简述:参见上文。

问题分析

  需要将英文单词的数字转换为数字,用map比较合适。另外“+”和“=”也需要转换。

程序说明:(略)。


AC的C++语言程序如下:

/* HDU1228 A + B */

#include <iostream>
#include <map>
#include <string>

using namespace std;

const int PLUS = 100;
const int EQUAL = 200;

int main()
{
    int a, b;
    string s;
    map<string, int> m;

    m["zero"] = 0;
    m["one"] = 1;
    m["two"] = 2;
    m["three"] = 3;
    m["four"] = 4;
    m["five"] = 5;
    m["six"] = 6;
    m["seven"] = 7;
    m["eight"] = 8;
    m["nine"] = 9;
    m["+"] = PLUS;
    m["="] = EQUAL;

    for(;;) {
        a = 0;
        while(cin >> s) {
            if(m[s] == PLUS)
                break;
            a = a * 10 + m[s];
        }

        b = 0;
        while(cin >> s) {
            if(m[s] == EQUAL)
                break;
            b = b * 10 + m[s];
        }

        if(a == 0 && b == 0)
            break;
        else
            cout << a + b << endl;

    }

    return 0;
}



### HDU 3342 并查集 解题思路与实现 #### 题目背景介绍 HDU 3342 是一道涉及并查集的数据结构题目。该类问题通常用于处理动态连通性查询,即判断若干元素是否属于同一集合,并支持高效的合并操作。 #### 数据描述 给定一系列的人际关系网络中的朋友关系对 (A, B),表示 A 和 B 是直接的朋友。目标是通过这些已知的关系推断出所有人之间的间接友谊连接情况。具体来说,如果存在一条路径使得两个人可以通过中间人的链条相连,则认为他们是间接朋友。 #### 思路分析 为了高效解决此类问题,可以采用带按秩压缩启发式的加权快速联合-查找算法(Weighted Quick Union with Path Compression)。这种方法不仅能够有效地管理大规模数据集下的分组信息,而且可以在几乎常数时间内完成每次查找和联合操作[^1]。 当遇到一个新的友链 `(a,b)` 时: - 如果 a 和 b 已经在同一棵树下,则无需任何动作; - 否则,执行一次 `union` 操作来把它们所在的两棵不同的树合并成一棵更大的树; 最终目的是统计有多少个独立的“朋友圈”,也就是森林里的树木数量减一即是所需新建桥梁的数量[^4]。 #### 实现细节 以下是 Python 版本的具体实现方式: ```python class DisjointSet: def __init__(self, n): self.parent = list(range(n)) self.rank = [0] * n def find(self, p): if self.parent[p] != p: self.parent[p] = self.find(self.parent[p]) # 路径压缩 return self.parent[p] def union(self, p, q): rootP = self.find(p) rootQ = self.find(q) if rootP == rootQ: return # 按秩合并 if self.rank[rootP] > self.rank[rootQ]: self.parent[rootQ] = rootP elif self.rank[rootP] < self.rank[rootQ]: self.parent[rootP] = rootQ else: self.parent[rootQ] = rootP self.rank[rootP] += 1 def solve(): N, M = map(int, input().split()) dsu = DisjointSet(N+1) # 初始化不相交集 for _ in range(M): u, v = map(int, input().split()) dsu.union(u,v) groups = set() for i in range(1,N+1): groups.add(dsu.find(i)) bridges_needed = len(groups)-1 print(f"Bridges needed to connect all components: {bridges_needed}") solve() ``` 这段代码定义了一个名为 `DisjointSet` 的类来进行并查集的操作,包括初始化、寻找根节点以及联合两个子集的功能。最后,在主函数 `solve()` 中读取输入参数并对每一对好友调用 `dsu.union()` 方法直到遍历完所有的边为止。之后计算不同组件的数量从而得出所需的桥接次数。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值