[网络流] 二分图匹配

二分图匹配是最大流问题的一种特殊情况,常用于解决指派问题。给定N台计算机和K个任务,每台计算机能处理特定任务,目标是找出能处理的最大任务数。通过构建无向二分图并寻找最大匹配来求解,最大匹配的基数表示最大任务数。当匹配数等于顶点数的一半时,称为完美匹配。二分图匹配在程序设计竞赛中常见,并可通过转化为最大流问题求解,算法复杂度为O(V*E)。
摘要由CSDN通过智能技术生成

二分图匹配,本质上是最大流问题的一种特殊情况。

指派问题
有N台计算机和K个任务,我们可以给每台计算机分配一个任务,每台计算机能够处理的任务种类各不相同,请求出最多能够处理的任务个数。

这个问题可以像下面这样转化为图论模型来分析。我们可以像下面这样来定义无向二分图 G=(UV,E)

U是代表计算机的顶点集合,V是代表任务的顶点集合,对于任意 uUvV 计算机u能够处理任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值