Newton法、弦截法

一、简介

牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。另外该方法广泛用于计算机编程中。

弦截法是一种求方程根的基该方法,在计算机编程中常用。
他的思路是这样的:任取两个数x1、x2,求得对应的函数值f(x1)、f(x2)。如果两函数值同号,则重新取数,直到这两个函数值异号为止。连接(x1,f(x1))与(x2,f(x2))这两点形成的直线与x轴相交于一点x,求得对应的f(x),判断其与f(x1)、f(x2)中的哪个值同号。如f(x)与f(x1)同号,则f(x)为新的f(x1)。将新的f(x1)与f(x2)连接,如此循环。体现的是极限的思想。

牛顿法详解

二、实现

# -*- coding: utf-8 -*-
"""
Created on Fri Dec 16 12:41:37 2016

    Newton法、弦截法

@author: Administrator
"""

from numpy import *
from matplotlib import pyplot as plt 

def f(x):
    return x**3 + 2 * x**2 + 10 *x - 100

def f_derivative(x):
    return 3 * x**2 + 4 *x + 10

#牛顿法
def newton():
    x0 = 0
    x1 = 1.1
    count = 0
    while True:
        x0 = x1
        f_derivative_num = f_derivative(x0)
        if f_derivative_num != 0:
            x1 = x0 - f(x0) / f_derivative_num
        else:
            return
        if abs(x1 - x0) < 1e-10:
            break
        else:
            print 'Newton:',count
            print abs(x1 - x0)
            count += 1
    return x1

#弦截法
def secant():
    x0 = 0
    x1 = 1.1
    count = 0
    while True:       
        x2 = x1 - f(x1) * (x1 - x0) / (f(x1) - f(x0))         
        if abs(x2-x1) < 1e-10:             
            break
        else:
            print 'Secant:',count
            print abs(x2 - x1)
            x0 = x1
            x1 = x2
            count += 1
    return x2

if __name__ == '__main__':
    ans1 = newton()
    ans2 = secant()

    x = linspace(-5,5,1000)
    y = f(x)
    fig = plt.figure(figsize=(8,4))
    ax = fig.add_subplot(111)
    ax.plot(x,y,color='r',linestyle='-',label='f(x)')
    ax.scatter(ans1,f(ans1),label='Newton',color='y')
    ax.scatter(ans2,f(ans2),label='Secant',color='k')
    ax.legend(loc='lower right')
    fig.show()
    fig.savefig('a.png')

牛顿法、弦截法求根

1. 二分 二分是一种简单而有效的解非线性方程的方。其基本思想是不断将区间一分为二,然后根据函数在两个子区间的符号来确定非线性方程的根在哪个子区间内,并继续对该子区间进行二分,直到满足指定的精度要为止。 具体的步骤如下: 1)选择一个初始区间 [a, b],使得 f(a) 和 f(b) 的符号不同。 2)计算区间的中点 c = (a+b)/2,并计算 f(c) 的值。 3)如果 f(c) 等于 0 或者满足指定的精度要,则 c 就是方程的一个根。 4)如果 f(c) 和 f(a) 的符号相同,则根在 [c, b] 区间内,否则根在 [a, c] 区间内。 5)重复步骤 2 至 4,直到满足指定的精度要为止。 二分的优点是简单易懂,收敛速度比较稳定,缺点是需要两个初始值,且收敛速度比较慢。 2. 不动点迭代 不动点迭代是一种解非线性方程的常用方,其基本思想是将非线性方程转化为不动点方程,然后通过迭代的方解不动点方程。 具体的步骤如下: 1)将非线性方程 f(x) = 0 转化为不动点方程 x = g(x),其中 g(x) = x - f(x)/h(x),h(x) 不等于 0。 2)选择一个初始值 x0。 3)通过不断迭代得序列 {xn},其中 xn+1 = g(xn)。 4)如果序列 {xn} 收敛到 x,则 x 就是方程的一个根。 不动点迭代的优点是收敛速度比较快,缺点是需要找到一个合适的不动点方程,并且要保证序列 {xn} 收敛。 3. Newton Newton是一种解非线性方程的常用方,其基本思想是利用函数的泰勒级数在某点的展开来逼近函数的零点。 具体的步骤如下: 1)选择一个初始值 x0。 2)计算函数 f(x) 在 x0 处的导数 f'(x0)。 3)根据函数的泰勒级数在 x0 处的展开,得到近似方程 f(x) ≈ f(x0) + f'(x0)(x - x0)。 4)令近似方程等于 0,解出 x1 = x0 - f(x0)/f'(x0)。 5)重复步骤 2 至 4,直到满足指定的精度要为止。 Newton的优点是收敛速度很快,缺点是需要计算函数的导数,如果导数不存在或者计算不方便,则无使用此方。 4. 弦截法 弦截法是一种解非线性方程的常用方,其基本思想是利用函数在两个初始值处的切线与 x 轴的交点来逼近函数的零点。 具体的步骤如下: 1)选择两个初始值 x0 和 x1,使得 f(x0) 和 f(x1) 的符号不同。 2)计算切线的斜率 k = (f(x1) - f(x0))/(x1 - x0)。 3)计算切线与 x 轴的交点 x2 = x1 - f(x1)/k。 4)如果 f(x2) 等于 0 或者满足指定的精度要,则 x2 就是方程的一个根。 5)如果 f(x2) 和 f(x0) 的符号相同,则根在 [x2, x1] 区间内,否则根在 [x0, x2] 区间内。 6)将 x1 和 x2 作为新的初始值,重复步骤 2 至 5,直到满足指定的精度要为止。 弦截法的优点是收敛速度比较快,缺点是需要两个初始值,且收敛速度不如牛顿快。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值