MATLAB牛顿法改进之弦截法

MATLAB牛顿法改进之弦截法

一、算法原理

弦截法是牛顿法的改进,我们从牛顿法开始复习并讲解它的原理。

1、牛顿法就是将f(x)在点xk处泰勒展开为f(x)=f(xk)+f'(xk)(x-xk)+...进而得到迭代公式,

\Rightarrow x=xk-f(xk)/f'(xk)

由上式可知,如果如果我们选择x0作为初始点,点(x0,f(x0))的切线方程为y-f(x0)=f’(x0)(x-x0),

该切线方程与x轴交点的横坐标为X(1)=X(0)- f (X(0))/f’(X(0)),
然后以x1为初始点,继续循环上述过程。在该过程中,不断的对f(x)做切线,因此牛顿迭代法也叫切线法。

但是牛顿法的收敛性依赖初始点x0的选取。

2、牛顿下山法就是在牛顿法的基础上增加了下山因子,其运算过程与牛顿法类似,只是增加了需要改变下山因子的部分。

它改进了牛顿法对初值的依赖性,当所选初值不合适时(不满足单调性|f(x(k+1))|<|f(x(k))|),可以通过缩小下山因子,减小下一个点x(k+1)与x(k)的距离(缩小步长),若不合适则继续缩小。

3、牛顿迭代法每迭代一次除计算函数值f(xk) 外,都需计算导数值 f'(xk) ,计算量比较大;且迭代过程中计算x(k+1)时,仅利用了xk 点的信息,而没有充分利用已经求出的x(k-1),x(k-2)...;在导数计算比较麻烦或难以求出时,一个自然的想法就是在充分利用“旧信息”的同时,设法避开导数值的计算,弦截法就应运而生了。

(1) 构造思想:用割线的斜率代替牛顿迭代法中切线的斜率;

(2)   构造方法:将Newton迭代格式中的导数用差商代替。

切线斜率≈割线斜率,f'(xk)=f(xk)-f(x(k-1))/[xk-x(k-1)]

x(k+1)=xk-f(xk)*(xk-x(k-1))/[f(xk)-f(x(k-1))]

即每次取两个初值点,将初值点构成的直线的斜率代替牛顿法中切线的斜率f'(xk)。

二、matlab程序

clc
clear
h=@(x) x^3+x^2-1;
[x,tol]=xianjie(h,[1,2],1000)
function [result,tol]=xianjie(f,x,n) %f为函数句柄,x为初始弦截点,n为迭代次数
if nargout == 1  %判断输出参数的个数
    flag=1;
elseif nargout == 2
    flag=2;
end
x1=x(1);
x2=x(2);
i=1;
while i < n  %设置迭代次数上限值避免无解时陷入死循环
    x3=x2-f(x2)*(x2-x1)/(f(x2)-f(x1)); %迭代公式
    if abs(f(x3)) < 1e-8  %如果精度满足要求
        if flag==1  %1个输出参数
            result=x3; %输出解x
            return;
        elseif flag==2 %2个输出参数
            result=x3;     %同时输出x解x
            tol=abs(f(x3));
            return;
        end
    end
    x1=x2;
    x2=x3;
    i=i+1;
end

 

1. 目的: (1)通过采用牛顿迭代弦截法和二分求根的程序设计,使学生更加系统地理解和掌握C语言函数间参数传递方、数组和指针的应用等编程技巧。培养学生综合利用C语言进行科学计算,使学生将所学知识转化为分析和设计数学中的实际问题的能力,学会查资料和工具书。 (2)提高学生建立程序文档、归纳总结的能力。 (3)进一步巩固和灵活运用先修课程《计算机文化基础》有关文字处理、图表分析、数据归整、应用软件之间图表、数据共享等信息技术处理的综合能力。 2. 基本要求: (1)要求用模块化设计和C语言的思想来完成程序的设计; (2)要求分别编写牛顿迭代弦截法和二分求根的函数,分别存到不同的.CPP文件中; (3)在VC++6.0环境中,学会调试程序的方,及时查究错误,独立调试完成。 (4)程序调试通过后,完成程序文档的整理,加必要的注释。 一般解一元方程,常用采用的方有:牛顿迭代弦截法和二分等。 牛顿迭代求根 〖〖f(x)=a〗_0 x〗^n 〖〖 + a〗_1 x〗^(n-1) +⋯+〖 a〗_(n-2) x^2 +〖 a〗_(n-1) x +〖 a〗_n=0 求f(x)在〖 x〗_0附近的根。 计算公式:〖 x〗_(n+1)=〖 x〗_n- f(〖 x〗_n )/(f(〖 x〗_n)) ́ 精度:ε=|〖 x〗_(n+1)-〖 x〗_n|<1.0e-m ,m=6。 牛顿迭代 所求的根:满足精度的〖 x〗_n 二分 任取两点〖 x〗_1和〖 x〗_2,判断(〖 x〗_1, 〖 x〗_2)有无实根。如下图所示,如果f(〖 x〗_1 )和f(〖 x〗_2 )符号相反,说明(〖 x〗_1, 〖 x〗_2)之间有一实根。取(〖 x〗_1, 〖 x〗_2)的中点x,检查f(x)和f(〖 x〗_1 )是否同符号,如果不同号,说明实根在(〖 x〗_1,x)区间,x作为新的〖 x〗_2,舍弃(x, 〖 x〗_2)区间;若同号,则实根在(x, 〖 x〗_2)区间,x作为新的〖 x〗_1, 舍弃(〖 x〗_1,x)区间。再根据新的〖 x〗_1 、 〖 x〗_2,找中点,重复上述步骤。直到|〖 x〗_1-〖 x〗_2|〖<10〗^(-6)时,x =(〖 x〗_1+〖 x〗_2)/2为所求。 (3)弦截法 取f(〖 x〗_1 )与f(〖 x〗_2 )连线与x轴的交点x,从(〖 x〗_1, x)和(x, 〖 x〗_2)两个区间中取舍的方与二分相同。 计算公式为: 判断f(〖 x〗_1 )与f(〖 x〗_2 )是否同符号的方与二分采用的方相同。直到先后两次求出的x的值之差小于〖10〗^(-6)为止。 分别用牛顿迭代弦截法和二分求下列方程的根,分析比较各种方的迭代次数及精度。 〖f(x)=x〗^3 〖- 2x〗^2 +7x +4=0 牛顿迭代的初值:x=0.5; 弦截法〖 x〗_1,〖 x〗_2的初值:-1,1 二分〖 x〗_1,〖 x〗_2的初值:-1,0 精度要求:|〖 x〗_1-〖 x〗_2| 〖<10〗^(-6)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值