非线性方程求根——弦截法

Newton迭代法的改进——弦截法

 

 

个人学习笔记!

一、弦截法原理

 

Newton法要计算函数的导数,当导数不方便计算时,可以利用导数的定义,由相近点处函数值的差来近似,这就得到
弦截法公式:   
 

求解时需要给出 x0,x1两个初始值。

 

收敛性:超线性收敛,且收敛阶

注意:一般非线性方程有多个根,而弦截法只能得到所给初始值附近的一个根。在应用弦截法时应注意这点

 

 

二、python程序实现

例题:求函数在x=1附近的根。

import numpy as np
def f(x):
    return x**3-7.7*x*x+19.2*x-15.3
x0 = 1
x1 = 1.655889
f0 = f(x0)
f1 = f(x1)
while(np.abs(x1-x0)>1e-5):
    x2 = x1 - f1*(x1-x0)/(f1-f0)
    x0,x1 = x1,x2
    f0,f1 = f1,f(x1)
print('root:{:.4f}'.format(x2))

 

 
 
经过5次迭代, 输出结果:1.7000,达到精度1e-5,迭代曲线如下:
 
 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值